Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supporting Information

Degradation of tetracycline hydrochloride by near-infrared light-

responsive 0D/3D GdF₃: Yb³⁺, Er³⁺/MgIn₂S₄ upconversion

photocatalysts

Juanqin Xue, Zhaoyuan Cao, Guangdong Wu, Haodi Song, and Qiang Bi*

School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology,

Xi'an, 710055, China

* Corresponding author. E-mail Addresses: biq@xauat.edu.cn (Qiang Bi).

Fig. S1. Upconversion emission spectra of GFYEwith different Yb^{3+} contents(a) and Er^{3+} contents(b).

Fig. S2. EDS elemental mappings of GFYE(30)/MIS

Fig. S3. XPS valence band spectrum of $MgIn_2S_4$

Fig. S4. (a) Photocatalytic stability test of GFYE(30)/MIS under $\lambda \ge 400$ nm light. (b) XRD patterns of GFYE(30)/MIS before and after photocatalytic reaction

Fig. S5. LC-MS spectra of the degraded products of TCH

Catalysts	S (m ² /g)	Pore volume (cm ³ /g)
GdF_3 :Yb ³⁺ ,Er ³⁺ /MgIn ₂ S ₄	68.3341	0.241951
$MgIn_2S_4$	58.5251	0.226379

Table S1. Different samples' surface area and pore volume

Table S2. Fitting results of fluorescence decay	y curve in 524nm
---	------------------

Model	ExpDec2	ExpDec2	
Equation	$I(t)=A_1exp(-t/\tau_1) + A_2exp(-t/\tau_2)$	$I(t)=A_1exp(-t/\tau_1) + A_2exp(-t/\tau_2)$	
Drawing	GFYE	GFYE (30)/MIS	
$\mathbf{A_1}$	0.52067 ± 0.12637	0.34686 ± 0.0689	
$ au_1$	$325967.79486 \pm 27997.10125$	$90875.97167 \pm 9737.49826$	
A_2	0.49309 ± 0.12758	0.33538 ± 0.43741	
$ au_2$	$588019.77981 \pm 42148.14129$	$277444.65676 \pm 148456.75144$	
Reduced Chi-Sqr	1.18444E-4	6.51264E-5	
R-squared (COD)	0.99594	0.99082	
Adjusted R-squared	0.99593	0.9908	

 Table S3. Fitting results of fluorescence decay curve in 538nm

_

ExpDec2	ExpDec2		
$I(t)=A_1exp(-t/\tau_1) + A_2exp(-t/\tau_2)$	$I(t)=A_1exp(-t/\tau_1) + A_2exp(-t/\tau_2)$		
GFYE	GFYE (30)/MIS		
1.00948 ± 0.01274	0.36553		
$403027.17353 \pm 3476.43139$	293968.36147		
0.04315 ± 0.01309	0.3495		
$1084814.75255 \pm 165689.93331$	381908.04343		
3.00794E-5	3.94247E-5		
0.99893	0.99831		
0.99893	0.9983		
	ExpDec2 $I(t)=A_1exp(-t/\tau_1) + A_2exp(-t/\tau_2)$ GFYE 1.00948 ± 0.01274 $403027.17353 \pm 3476.43139$ 0.04315 ± 0.01309 $1084814.75255 \pm 165689.93331$ 3.00794E-5 0.99893 0.99893		

Table S4. Antibiotic degradation comparison table of upconversion photocatalytic materials

Photocatalyst	Initial concentration	Light	Time (min)	Removal efficiency	Reference
MgIn ₂ S ₄	10 mg/L 50 ml TCH	300 W xenon $lamp$ $\lambda > 400 \text{ nm}$	60	58 %	This work (MgIn ₂ S ₄)
MgIn ₂ S ₄	20 mg/L 150 ml TC	300 W xenon lamp $\lambda > 420$ nm	100	17 %	Chemosphere (2022)

MgIn ₂ S ₄	20 mg/L	300 W metal	20	15 %	Applied Surface
	100 ml TCH	halide lamp λ			Science(2022)
		> 420 nm			
MgIn ₂ S ₄	20 mg/L	300 W xenon	60	57 %	Journal of
	50 mL OTC	lamp			Colloid and
		$\lambda > 420 \text{ nm}$			Interface
					Science(2020)
GdF3:Yb ³⁺ ,Er ³⁺	10 mg/L 50 ml	300 W xenon	60	72 %	This work
/MgIn ₂ S ₄	TCH	lamp			(GdF ₃ :Yb ³⁺ ,Er ³⁺
		$\lambda > 400 \text{ nm}$			$/MgIn_2S_4$)
FeOOH/MgIn ₂ S ₄	20 mg/L	300 W xenon	100	70 %	Chemosphere
	150 ml TC	lamp			(2022)
		$\lambda > 420 \text{ nm}$			
BiOCl/MgIn ₂ S ₄	10 mg/L 50 ml	50 W LED	120	65 %	Chemosphere
	CBZ	lamp			(2021)