Siccanin-Related Drimane Meroterpenoids: Biological Activities and Synthesis

Shengxin Sun^a, Xia wang^a, Nvdan Hu^a, ShiQi Fu^a, Shengkun Li*a

^a State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.

Corresponding Author: Shengkun Li, Email SKL505@outlook.com

Antifungal activity			
Numb.	Compds	Species and bioactivity	Ref.
1	Siccanin	<i>Trichophyton interdigitale</i> (MIC=0.1 µg/mL)	1
		Trichophyton asteroids (MIC=0.1 µg/mL)	
		Aspergillus oryzae (MIC=12.5 µg/mL)	
		Aspergillus niger (MIC=12.5 µg/mL)	
		Penicillium digitatum (MIC=12.5 µg/mL)	
		<i>Gibberella fujikuroi</i> (MIC=5.0 µg/mL)	
		Macrospora bataticola (MIC=5.0 µg/mL)	
		Gloeosporium kaki (MIC=12.5 µg/mL)	
		Alternaria kikuchiana (MIC=12.5 µg/mL)	
		<i>Piricularia oryzae</i> (MIC=12.5 µg/mL)	
		<i>Ophiobolus miyabeanus</i> (MIC=12.5 µg/mL)	
		Candida albicans (MIC=25.0 µg/mL)	
		Saccharomyces cerevisiae (MIC=50 µg/mL)	
		Zygosaccharomyces salsus (MIC=50 µg/mL)	
		Torula utilis (MIC=50 µg/mL)	
	Subs	stituted drimane type meroterpenoids	
6	Zonarol	Phytophthora cinnamomic	2
		Rhizoctonia solani	
		Sclerotinia sclerotiorum	
		Sclerotium rolfsii	
16	Macrophorin A	<i>Botryosphaeria berengeriana</i> (IC ₅₀ =6 µg/disc)	3
		<i>Gibberella fujikuroi</i> (IC ₅₀ =6 µg/disc)	
20	Macrophorin E	<i>Botryosphaeria berengeriana</i> (IC ₅₀ =25 µg/disc)	3
		<i>Gibberella fujikuroi</i> (IC ₅₀ =12 µg/disc)	
21	Macrophorin F	<i>Botryosphaeria berengeriana</i> (IC ₅₀ =6 µg/disc)	3
		<i>Gibberella fujikuroi</i> (IC ₅₀ =3 µg/disc)	
22	Macrophorin G	<i>Botryosphaeria berengeriana</i> (IC ₅₀ =25 µg/disc)	3
		<i>Gibberella fujikuroi</i> (IC ₅₀ =12 µg/disc)	
25	2',3'-epoxy-13-	Aspergillus flaVus	4
	hydroxy-4'-	Fusarium Verticillioide	
	oxomacrophorin A		
26	Neomacrophorin I	Cochliobolus miyabeanus	5
27	Neomacrophorin II	Cochliobolus miyabeanus	5
28	Neomacrophorin III	Cochliobolus miyabeanus	5
41	Isozonarol	Phytophthora cinnamomic	2
		Rhizoctonia solani	
		Sclerotinia sclerotiorum	
		Sclerotium rolfsii	
47	Peyssonoic acid A	Lindra thalassiae	6
64	Albaconol	Sclerotinia sclerotiorum (EC ₅₀ = 24.35 μ M)	7
65	Neoalbaconol	Sclerotinia sclerotiorum (EC ₅₀ = 40.38 µM)	7

Table S1. Drimane meroterpenoids with antifungal activity.

		Rhizoctonia solani (EC ₅₀ = 35.16 µM)	
66	Dictyvaric acid	Sclerotinia sclerotiorum (EC ₅₀ = 22.16 μ M)	7
		Rhizoctonia solani (EC ₅₀ =22.54 µM)	
81	Siphonodictyal B	Aspergillus fumigatus	8
82	Siphonodictyal B1	Botrytis cinerea	8
83	Siphonodictyal B2	Botrytis cinerea	8
	Benzopyran-	fused-naphthene type drimane meroterpenoid	
90	Puupehenone	<i>Candida albicans</i> (MIC= 3-3.1 µg/mL)	9,
		Trichophyton mentagrophytes (MIC= 1.6 µg/mL	10,11,
		Aspergillus oryzae	12, 13
		Penicillium notatum	
		Saccharomyces cerevisiae	
		Candida albicans	
		Cryptococcus neoformans ATCC 90113 (IC ₅₀ = 0.38	
		μg/mL)	
		Candida albicans ATCC 90028 (IC ₅₀ = 3.02 µg/mL)	
		Candida Krusei ATCC 6258 (IC ₅₀ = 1.49 µg/mL)	
		Candida glabrata ATCC 90030 (IC ₅₀ = 2.67	
		μg/mL)	
		Aspergillus fumigatus ATCC 90906 (IC ₅₀ = 5.63	
		μg/mL)	
92	21-	Aspergillus oryzae	11, 13
	chloropuupehenone	Penicillium notatum	
		Trichophyton mentagrophytes	
		Saccharomyces cerevisiae	
		Candida albicans	
		<i>Cryptococcus neoformans</i> ATCC 90113 (IC ₅₀ = 5.73	
		μg/mL)	
93	Puupehedione	Aspergillus oryzae	11
		Penicillium notatum	
		Trichophyton mentagrophytes	
		Saccharomyces cerevisiae	
		Candida albicans	
94	Cyanopuupehenol	Aspergillus oryzae	11
		Penicillium notatum	
		Trichophyton mentagrophytes	
		Saccharomyces cerevisiae	
		Candida albicans	
97	15α-	Candida tropicalis	14
	methoxypuupehenol		-
162	Corallidictyal A	Hansenula anomala	8
		Aspergillus fumigatus	
		Botrytis cinerea	
		Pythium debaryanum	

163	Corallidictyal B	Hansenula anomala	8
		Aspergillus fumigatus	
		Botrytis cinerea	
		Pythium debaryanum	
164	Corallidictyal C	Aspergillus fumigatus	8
165	Corallidictyal D	Aspergillus fumigatus	8
	Indane-fus	ed-naphthene type drimane meroterpenoid	
199	Dasyscyphin D	Magnaporthe grisea	15
200	Dasyscyphin E	Magnaporthe grisea	15

Table S2. Drimane meroterpenoids with antibacterial activity.

		Antibacterial activity	
Nu	Compds	Species and bioactivity	Ref.
mb.			
1	Siccanin	Bacillus subtilis (MIC=50 µg/mL)	1
		Staphylococcus aureus 209P (MIC=50 µg/mL)	
		Sarcina lutea (MIC=50 µg/mL)	
		Escherichia coli (MIC=12.5 µg/mL)	
		Pseudomonas aeruginosa (MIC=50 µg/mL)	
		<i>Mycobacterium tuberculosis 607</i> (MIC=25 µg/mL)	
	S	ubstituted drimane type meroterpenoids	
16	Macrophorin A	Staphylococcus aureus (MIC=25 ppm)	16
		Trichophyton spp.(6.2-25 ppm)	
25	2', 3'-epoxy-13-	Staphylococcus aureus (ATCC 259203)	4
	hydroxy-4'-	Bacillus subtilis (ATCC 6051)	
	oxomacrophorin A		
32	Myrothecol A	Staphylococcus aureus (MIC= 12.5 µg/mL)	17
		Bacillus cereus (MIC= 25.0 µg/mL)	
33	Myrothecol B	Staphylococcus aureus (MIC= 50.0 µg/mL)	17
		Bacillus cereus (MIC= 100.0 µg/mL)	
34	Myrothecol C	Staphylococcus aureus (MIC= 50.0 µg/mL)	17
		Bacillus cereus (MIC= 100.0 µg/mL)	
35	Myrothecol D	Staphylococcus aureus (MIC= 100.0 µg/mL)	17
		Bacillus cereus (MIC> 100.0 µg/mL)	
36	Myrothecol E	Staphylococcus aureus (MIC= 50.0 µg/mL)	17
		Bacillus cereus (MIC> 100.0 µg/mL)	
45	Siphonodictyal C	Stuphylococcus aureus	18
		Bacillus subtilis	
		Marine bacterium Vibrio anguillarum	
47	Peyssonoic acid A	<i>Pseudoalteromonas bacteriolytica (P. bacteriolytica)</i> (IC_{50}	6
		= 799 μM)	
63	Siphonodictyal A	Stuphylococcus aureus	19
		Bacillus subtilis	

68	Dysidphenol C	Escherichia coli (25922) (MIC=50 µg/mL)	20
		Bacillus subtilis (6633) (MIC=100 µg/mL)	
		Staphylococcus aureus (25923) (MIC=100 µg/mL)	
70	Xishaeleganin B	Staphylococcus aureus (S. aureus USA300 LAC)	21
		(MIC=1.5 µg/mL)	
		Streptococcus pyogenes (S. pyogenes ATCC 12344)	
		(MIC=1.5 µg/mL)	
		Enterococcus faecium (E. faecium Efm-HS0649)	
		(MIC=3.0 µg/mL)	
72	Siphonodictyol H	Stuphylococcus aureus	18
		Bacillus subtilis	
81	Siphonodictyal B	Staphylococcus aureus	8, 19
		Bacillus subtilis	
		Escherichia coli tolC	
82	Siphonodictyal B1	Staphylococcus aureus	8
83	Siphonodictyal B2	Staphylococcus aureus	8
	Benzopyra	n-fused-naphthene type drimane meroterpenoids	
90	Puupehenone	Staphylococcus aureu	10,
		Streptococcus pyrogenes	12,
		Staphylococcus aureus	22,
		Bacillus cereus	23
		Staphylococcus aureus	
		<i>M. tuberculosis</i> (H37Rv) (MIC=12.5 μ g/mL, IC ₅₀ = 2.0 μ	
		g/mL)	
91	Cyanopuupehenone	penicillium notatum	24
		trichophyton mentagrophytes	
		saccharomyces cerevisiae	
97	15α-	Staphylococcus aureus	14
	methoxypuupehenol		
102	Puupehenol	Staphylococcus aureus	22
		Bacillus cereus	
106	Hongoquercin A	<i>Staphylococcus aureus</i> (MIC= 4-8 µg/mL)	25
		<i>Staphylococcus haemolyticus</i> GC 4546 (MIC= 8 µg/mL)	
		Staphylococcus Coagulase Negative GC (MIC= 4-16	
		μg/mL)	
		<i>Enterococcus faecalis</i> (MIC= 8 µg/mL)	
		Enterococcus faecalis (MIC= 4-8 µg/mL	
		<i>Bacillus cereus</i> GC 4561 (MIC= 2 µg/mL)	
		<i>Sarcina lutea</i> GC 4562 (MIC= 4 µg/mL)	
	Benzofura	n-spiro-naphthene type drimane meroterpenoids	
158	Stachybotrydial	Staphylococcus aureus	26
162	Corallidictyal A	<i>Escherichia coli</i> tolC	8
		Staphylococcus aureus	
		Candida albicans	

163	Corallidictyal B	Escherichia coli tolC	8
		Staphylococcus aureus	
		Candida albicans	
164	Corallidictyal C	Escherichia coli tolC	8
		Staphylococcus aureus	
165	Corallidictyal D	Escherichia coli tolC	8
		Staphylococcus aureus	
168	Dysidphenol A	Escherichia coli (25922) (MIC=100 µg/mL)	20
		Bacillus subtilis (6633) (MIC=100 µg/mL)	
		Staphylococcus aureus (25923) (MIC=100 µg/mL)	
175	Stachybotrolide	<i>Staphylococcus aureus</i> DHFR (IC ₅₀ = 41.5 µM)	26
	(Stachybotrylactone	<i>Staphylococcus aureus</i> (IC ₅₀ = 32 µg/mL)	
)	Methicillin-resistant Staphylococcus aureus CCARM3167	
		$(IC_{50}=32 \ \mu g/mL)$	
	Indane-	fused-naphthane-type drimane meroterpenoids	
198	Dasyscyphin C	MRSA (MIC=16 µg/mL)	27
		Pseudomonas aeruginosa (MIC=63 µg/mL)	
		Bacillus anthracis (MIC=2 µg/mL)	
201	Dasyscyphins F	MRSA (MIC=63 µg/mL)	27
		Pseudomonas aeruginosa (MIC=125 µg/mL)	
		Bacillus anthracis (MIC=31µg/mL)	
		Others	
224	Cyclosiphonodictyo	<i>Staphylococcus aureus</i> (MRSA) (IC ₅₀ = 117 µM)	28
	1 A	<i>Staphylococcus aureus</i> (MSSA) (IC ₅₀ = 117 µM)	
		<i>Micrococcus luteus</i> (IC ₅₀ = 58 μ M)	

Table S3. Drimane meroterpenoids with antiviral activity.

Antiviral activity			
Nu	Compds.	Species and bioactivity	Ref.
mb.			
		Substituted drimane type meroterpenoids	
11	Peyssonol A	HIV (IC ₅₀ = 1 μ M)	29, 30
		HIV-1 NL-Rluc Virus (EC ₅₀ = 1×10^{-6} M)	
15	Penicilliumin A	coxsackievirus B3 (CVB3) (TC ₅₀ =40.72 µg/mL)	31
		herpes simplex virus type I (HSV-1) (TC ₅₀ =133.52 µg/mL)	
		influenza A virus subtype H5N3 (A/H5N3) (TC ₅₀ =43.00	
		μg/mL)	
	Benzoj	pyran-fused-naphthene type drimane meroterpenoids	
90	Puupehenone	Mv l Lu/HSV II	11
		CV-I/HSV-1	
		BHK/VSV	
91	Cyanopuupeheno	CV-I/HSV-1	11
	ne	BHK/VSV	
92	21-	Mv l Lu/HSV II	11

	chloropuupeheno	CV-I/HSV-1	
	ne	BHK/VSV	
93	Puupehedione	Mv l Lu/HSV II	11
		CV-I/HSV-1	
		BHK/VSV	
94	Cyanopuupeheno	Mv l Lu/HSV II	11, 24
	1	CV-I/HSV-1	
		BHK/VSV	
		Herpes simplex II	
125	Chrodrimanin A	influenza A virus (H1N1) (IC ₅₀ = 21 µM)	32
129	Chrodrimanin E	influenza A virus (H1N1) (IC ₅₀ = 55 μ M)	32
130	Chrodrimanin F	influenza A virus (H1N1) (IC ₅₀ = 57 μ M)	32
135	Chrodrimanin K	influenza A virus (H1N1) (IC ₅₀ = 74 μ M)	33
138	Chrodrimanin N	influenza A virus (H1N1) (IC ₅₀ = 58 µM)	33
139	3-	influenza A virus (H1N1) (IC ₅₀ = 34 µM)	33
	hydroxypentacec		
	ilide A		
140	Chrodrimanin O	protein tyrosine phosphatase 1B (PTP1B) (IC ₅₀ = 71.6 μ M)	34
143	Chrodrimanin R	protein tyrosine phosphatase 1B (PTP1B) (IC ₅₀ = 62.5 μ M)	34
144	Chrodrimanin S	protein tyrosine phosphatase 1B (PTP1B) (IC ₅₀ = 63.1μ M)	34
	Benzo	furan-spiro-naphthene type drimane meroterpenoids	
166	F1839-I	HIV (IC ₅₀ =15.6 μM)	35
180	Stachybotrysin A	HIV (IC ₅₀ =19.6 μM)	35
		IAV (IC ₅₀ =12.4 μM)	
181	Stachybotrysin B	HIV (IC ₅₀ =19.2 μM)	35
184	Stachybotrysin E	HIV (IC ₅₀ =20.5 μM)	35
		IAV (IC ₅₀ =45.6 μM)	
170	Stachybotrylacto	IAV (IC ₅₀ =18.9 μM)	35
	ne acetate		
185	Stachybotrysin F	HIV (IC ₅₀ =35.7 μM)	35
		IAV (IC ₅₀ =14.6 μM)	
186	Stachybotrysin G	HIV (IC ₅₀ =18.1 μM)	35
		IAV (IC ₅₀ =23.4 μ M)	

A Insecticidal activity			
	I		
Nu	Compds	Species and bioactivity	Ref.
mb.			
1	Siccanin	anti-trypanosomatid	36
	Benzoj	pyran-fused-naphthene type drimane meroterpenoids	
90	Puupehenone	Trichomonas vaginalis (MIC= 3.1µg/mL)	10, 14
		Antimalarial activity against Chloroquine-Susceptible F32	
		(IC50=0.6 µg/mL) and Chloroquine-Resistant FcB1	

		$(IC_{50}=2.1 \ \mu g/mL)$ and PFB $(IC_{50}=1.5 \ \mu g/mL)$ against P.	
		falciparum Strains	
96	15-	Plasmodium falciparum (D6 clone) (IC ₅₀ =2.0 µg/mL)	37
	oxopuupehenol	Plasmodium falciparum (W2 clone) (IC ₅₀ =1.3 µg/mL)	
97	15α-	Antimalarial activity against Chloroquine-Susceptible F32	14
	methoxypuupehe	(IC ₅₀ =0.4 μ g/mL) and Chloroquine-Resistant FcB1	
	nol	(IC ₅₀ =1.4 μ g/mL) and PFB (IC ₅₀ =1.2 μ g/mL) against	
		Plasmodium falciparum Strains	
120	Phomoarcherin B	<i>Plasmodium falciparum</i> (IC ₅₀ =0.79 µg/mL)	38
124	Pentacecilide D	insecticidal activity against silkworms (LD50 = $20 \mu g/g$)	39
126	Chrodrimanin B	third instar larva of the silkworm (LD ₅₀ =10 μ g/g)	40, 41
		chrodrimanin B acts as a potent, non-open-channel-	
		blocking antagonist on B. mori RDL with an IC_{50} of 1.13	
		nm	
128	Chrodrimanin D	third instar larva of the silkworm (LD ₅₀ =20 μ g/g)	39
129	Chrodrimanin E	third instar larva of the silkworm $(LD_{50}=10 \ \mu g/g)$	39
130	Chrodrimanin F	third instar larva of the silkworm (LD ₅₀ =50 μ g/g)	39
	Inda	ne-fused-naphthene type drimane meroterpenoids	
191	Pelorol	brine shrimp (LC ₅₀ = 5-10 μ g/mL)	42

Table S5. Drimane meroterpenoids with anticancer activity and cytostatic activity.

		5. Anticancer activity and Cytostatic activity	
Numb.	Compds	Species and bioactivity	Ref.
		Substituted drimane type meroterpenoids	
2	Tauranin	NCI-H460 (IC ₅₀ = 4.3 μM)	43
		MCF-7(IC ₅₀ = 1.5 µM)	
		SF-268(IC ₅₀ = 1.8 µM)	
		PC-3M (IC ₅₀ =3.5 µM)	
		MIA Pa Ca-2 (IC ₅₀ = 2.8μ M)	
6	Zonarol	L-929 (murine fibroblasts)	44
		K-562 (human leukaemia)	
		HeLa (human cervix carcinoma)	
9	Zonarone	L-929 (murine fibroblasts)	44
		K-562 (human leukaemia)	
		HeLa (human cervix carcinoma)	
10	Hyatellaquino	KB (IC ₅₀ = 14 μ M)	44, 46,
	ne	HM02 (GI ₅₀ = 5.3 μg/mL)	47, 48
		HepG2 (GI ₅₀ = $6.0 \ \mu g/mL$)	
		MCF (GI ₅₀ = 2.4 µg/mL)	
		breast cancer (IC ₅₀ = 4.45 μ g/mL)	
		small cell lung cancer (NCI-H187) cell (IC ₅₀ = 10.90	
		µg/mL)	
		L-929 (GI ₅₀ = 20.9 µM)	

		K-562 (GI ₅₀ = 8.4 μM)	
		HeLa (CC ₅₀ = 72.1 μ M)	
12	F-12509A	rat liver SPH kinase (IC ₅₀ = 18 μ M.)	49
13	Purpurogemut	K562 (IC ₅₀ = 13.4 μM.)	45, 50
	antin	HL-60(IC ₅₀ =18.1 μM.)	
		HeLa (IC ₅₀ = 18.9 µM.)	
		BGC-823 (IC ₅₀ =33.0 μM.)	
		MCF-7 (IC ₅₀ = 29.3 μM.)	
		U937 (IC ₅₀ = 32.2 μM.)	
14	Purpurogemut	K562 (IC ₅₀ = 0.93 μM.)	50
	antidin	HL-60(IC ₅₀ =2.48 µM.)	
		HeLa (IC ₅₀ = 16.6 µM.)	
		BGC-823 (IC ₅₀ =31.0 μM.)	
		MCF-7 (IC ₅₀ = 26.3 μM.)	
15	Penicilliumin	A375 (GI ₅₀ = 22.88µg/mL)	31
	А	B16(GI ₅₀ =27.37 µg/mL)	
		Hela (GI ₅₀ = 44.05 μ g/mL)	
16	Macrophorin	L-5178Y (MIC=0.3 ppm)	16,45
	A	K562 (IC ₅₀ =2.6 μ M)	,
		MCF-7 (IC ₅₀ =5.28 µM)	
		Hela (IC ₅₀ = 3.86μ M)	
		DU145 (IC ₅₀ =3.29 µM)	
		U937 (IC ₅₀ =1.4 μ M)	
		H1975 (IC ₅₀ =3.18 µM)	
		SGC-7901 (IC ₅₀ =5.22 µM)	
		A549 (IC ₅₀ =1.57 µM)	
		MOLT-4 (IC ₅₀ =1.17 μM)	
		HL60(IC ₅₀ =1.68 μ M)	
24	4'-	K562 (IC ₅₀ = 0.55μ M)	45
	oxomacrophor	MCF-7(IC ₅₀ = 0.68μ M)	
	in A	$DU145(IC_{50}=35.4 \mu M)$	
		$U937(IC_{50} = 6.74 \ \mu M)$	
		H1975(IC ₅₀ = $0.48 \mu\text{M}$)	
		SGC-7901 (IC ₅₀ = 1.18 µM)	
		A549 (IC ₅₀ =0.33 μM)	
		MOLT-4 ($IC_{50} = 0.19 \mu M$)	
		HL60 (IC ₅₀ = 0.29μ M)	
26	Neomacropho	human colon adenocarcinoma (COLO 201) cell	5, 51
	rin I	proliferation ((IC ₅₀ =46 μ g/mL)	,
		HL60 (IC ₅₀ =2.6 μ M)	
		Chymotrypshi-like (IC ₅₀ = 5.7μ M)	
		Trypsin-like (IC ₅₀ =27.9 μ M)	
		Caspase-like (IC ₅₀ = 5.2μ M)	
27	Neomacropho	HL60 (IC ₅₀ =21.6 μ M)	51
i .	po		

	rin II	Chymotrypshi-like (IC ₅₀ =93.6 µM)	
		Caspase-like (IC ₅₀ =87.3 µM)	
28	Neomacropho	HL60 (IC ₅₀ =15.0 μM)	51
	rin III	Chymotrypshi-like (IC ₅₀ =31.9 µM)	
		Caspase-like (IC ₅₀ =30.1 µM)	
29	Neomacropho	HL60 (IC ₅₀ =1.3 μM)	51
	rin IV	Chymotrypshi-like (IC ₅₀ =5.3 µM)	
		Trypsin-like (IC ₅₀ =22.5 µM)	
		Caspase-like (IC ₅₀ =3.9 µM)	
30	Neomacropho	HL60 (IC ₅₀ =25.3 μM)	51
	rin V		
31	Neomacropho	HL60 (IC ₅₀ =0.3 μM)	51
	rin VI	Chymotrypshi-like (IC ₅₀ =26.3 µM)	
		Trypsin-like (IC ₅₀ =76.1 µM)	
		Caspase-like (IC ₅₀ =17.8 µM)	
32	Myrothecol A	A549 (IC ₅₀ = 8.0 μM)	17
		HeLa (IC ₅₀ = 7.9 μM)	
		HepG2 (IC ₅₀ = 15.2 μ M)	
33	Myrothecol B	A549 (IC ₅₀ = 39.8 µM)	17
		HeLa (IC ₅₀ = 29.3 µM)	
		HepG2 (IC ₅₀ = 48.5 μ M)	
34	Myrothecol C	A549 (IC ₅₀ = 41.5 μM)	17
		HeLa (IC ₅₀ = 35.9μ M)	
		HepG2 (IC ₅₀ = 34.2 μ M)	
35	Myrothecol D	A549 (IC ₅₀ = 29.4 μM)	17
		HeLa (IC ₅₀ = 19.2 µM)	
		HepG2 (IC ₅₀ = 37.8 μ M)	
36	Myrothecol E	A549 (IC ₅₀ = 18.0 μM)	17
		HeLa (IC ₅₀ = 19.6 µM)	
		HepG2 (IC ₅₀ = 27.8 μ M)	
38	Myrothecol G	A549 (IC ₅₀ = 46.7 µM)	52
		HeLa (IC ₅₀ = 15.9 µM)	
		HepG2 (IC ₅₀ = 31.9 μ M)	
39	Myrothecol H	A549 (IC ₅₀ = 40.2 µM)	52
		HeLa (IC ₅₀ = 28.7 μ M)	
		HepG2 (IC ₅₀ = 25.7 μ M)	
41	Isozonarol	BAEC (IC ₅₀ = 26μ M)	44, 53
		A549 (IC ₅₀ = 15µM	
		SKBR3 (IC ₅₀ = 11µM)	
		L-929 (murine fibroblasts)	
		K-562 (human leukaemia)	
		HeLa (human cervix carcinoma)	
42	Isozonarone	L-929 (murine fibroblasts)	44
		K-562 (human leukaemia)	

		HeLa (human cervix carcinoma)	
43	20-O-acetyl-	HL60 (IC ₅₀ = 0.37μ M)	55, 56
	21-hydroxy-	MDA-MB-231 (LC ₅₀ =11.8 µM)	
	ent-isozonarol	A-549 (LC ₅₀ =11.8 μM)	
		HT-29 (LC ₅₀ =14.0 μM)	
44	21-Hydroxy-	HL60 (IC ₅₀ = 0.37μ M)	55
	ent-		
	isozonarone		
45	Siphonodictya	CDK4/cyclin D1 complexation (IC ₅₀ = 9 μ g/mL)	54
	1 C		
47	Peyssonoic	human ovarian cancer cell line (IC ₅₀ = 34.5 μ M)	6
	acid A		
48	Isohyatellaqui	breast cancer (IC ₅₀ = $6.69 \ \mu g/mL$)	47
	none	small cell lung cancer (NCI-H187) cell (IC ₅₀ = 11.52	
		µg/mL)	
49	Epoxyphomal	12 of a panel of 36 human tumor cell lines ($IC_{50}=0.017$ -	57, 58
	in A	11.420 μg/mL)	
		exert their cytotoxic effect through potent inhibition of	
		the 20S proteasome	
50	Epoxyphomal	12 of a panel of 36 human tumor cell lines ($IC_{50}=0.017$ -	57, 58
	in B	11.420 μg/mL)	
		exert their cytotoxic effect through potent inhibition of	
		the 20S proteasome	
52	Epoxyphomal	prostate PC3M (IC ₅₀ = 0.72μ M)	58
	in D	bladder BXF 1218 L (IC ₅₀ = 1.43 μ M) cancer cell lines	
54	Craterellin A	Mouse HSD1 (IC ₅₀ = 36.3 μ g/mL)	59
		Human HSD1(IC ₅₀ = 9.1 μ g/mL)	
		Human HSD2(IC ₅₀ = $1.5 \ \mu g/mL$)	
55	Craterellin B	Mouse HSD1 (IC ₅₀ =54.8 μ g/mL)	59
		Human HSD1(IC ₅₀ = $3.5 \ \mu g/mL$)	
		Human HSD2(IC ₅₀ >100µg/mL)	
56	Craterellin C	Mouse HSD1 (IC ₅₀ =93.3 μ g/mL)	59
		Human HSD1(IC ₅₀ = 14.8 μ g/mL)	
		Human HSD2(IC ₅₀ = 25.4 μ g/mL)	
61	Yahazunol	L-929, K-562, HeLa	44
		HM02 (GI ₅₀ = $4.2 \ \mu g/mL$)	
		HepG2 (GI ₅₀ = 7.1 μ g/mL)	
		MCF (GI ₅₀ = $6.0 \ \mu g/mL$)	
62	Ent-yahazunol	MDA-MB-231 (LC ₅₀ =27.7 µM)	56
		A-549 (LC ₅₀ =17.4 μM)	
		HT-29 (LC ₅₀ =14.0 μM)	
64	Albaconol	HepG2 (EC ₅₀ = 10.44 µM)	7
		MCF-7 (EC ₅₀ = 10.08 µM)	
65	Neoalbaconol	downstream phosphoinositide-3 kinase (PI3-K)/Akt-	60, 61

		hexokinase 2 (HK2) pathway, and further resulted in	
		energy depletion	
		HepG2 (EC ₅₀ = 10.44 μM)	
		MCF-7 (EC ₅₀ = 10.08 μM)	
69	Hippomeroter	Hep-G2	62
	pen B	MCF-7	
	-	SK-LI-1	
		SK-Mel-2	
75	Spongiaquino	L-929 (GI ₅₀ = 27.1 μ M)	44, 48
	ne	K-562 (GI ₅₀ = 13.4 μM)	
		HeLa ($CC_{50} = 75.1 \mu M$)	
		L-929, K-562, HeLa	
		HM02 (GI ₅₀ = $3.1 \mu g/mL$)	
		HepG2 (GI ₅₀ = $3.6 \ \mu g/mL$)	
		MCF (GI ₅₀ = 2.6 µg/mL)	
76	Wiedendiol B	L-929 (GI ₅₀ = 63.1 μ M)	48, 64
		K-562 (GI ₅₀ = 35.8 μM)	
		HeLa (CC_{50} = 38.1 µM)	
		cholesteryl ester transfer pprotein (CETP) (IC ₅₀ = 5 μ M)	
81	Siphonodictya	PI3Kα (IC ₅₀ = 2.6μ M)	8,63
	1 B	L929 mouse fibroblasts	
82	Siphonodictya	L929 mouse fibroblasts	8
	1 B1		
83	Siphonodictya	L929 mouse fibroblasts	8
	1 B2		
	Benzoj	pyran-fused-naphthene type drimane meroterpenoids	
86	Ent-	P-338, A-549, HT-29 and MEL-28 (IC ₅₀ = 15.91 μM)	53, 65
	chromazonaro	BAEC (IC ₅₀ = 45 μ M)	
	1	A549 (IC ₅₀ =14 μM)	
		H116 (IC ₅₀ = 14 µM)	
		PSN1 (IC ₅₀ = 15 μ M)	
		SKBR3 (IC ₅₀ = 13 µM)	
90	Puupehenone	P388 mouse leukemia (IC ₅₀ = 1 μ g/mL)	9, 53,
		A549 (human lung cancer cell line) ($IC_{50}=0.1-1$	64,66,
		μg/mL)	67, 68,
		HCT-8 (human colon cancer cell line) (IC_{50} = 1-10	69
		μg/mL)	
		MCF-7 (human mammary cancer cell line (IC ₅₀ =0.1-	
		1 µg/mL)	
		A549(IC ₅₀ =0.4 µg/mL)	
		HT-29(IC ₅₀ =1.2 μg/mL)	
		P338(IC ₅₀ =1.3µg/mL)	
		BAEC (IC ₅₀ = 10 μM)	
		A549 (IC ₅₀ =7 μM)	

		$H_{116}(IC_{50} = 8 \mu M)$	
		$PSN1 (IC_{50} = 5 \mu M)$	
		$SKBP3 (IC_{50} = 15 \mu M)$	
		$\frac{SKBKS(1C_{30}-15\mu\text{M})}{KB(MIC-5\mu\text{g/m}I)}$	
		$LOVO(MIC-1 \mu g/mL)$	
		$P_{288} (IC_{r} = 0.25 \text{ µg/mL})$	
		$A = 540 (IC_{30} - 0.25 \ \mu g/mL)$	
		$HT 20 (IC_{30} = 0.5 \mu g/mL)$	
		$CV = 1 (IC_{30} - 0.5 \mu g/mL)$	
		$C V = I (IC_{30} = 0.5 \mu g/mL)$	
		$TS (IC_{50} - 9 \mu g/mL)$	
		$PBOT(IC_{30} - 0 \mu g/mL)$	
		$PNA (IC_{50} = 0.4 \mu g/mL)$	
		$DNA (IC_{30}=0.5 \ \mu g/mL)$	
		$(IC_{50}-0.4 \mu g/IIIL)$	
		numan 3-, 12-, and 13-npoxygenases $(1C_{50} - 22, 6)$ and $0.68 \dots M$	
		0.08 µM)	
		A-349	
		$\frac{11-29}{10}$	
		KB cells $(1C_{50}=0.5\mu g/mL)$	
01	C	choicesteryl ester transfer pprotein (CETP) ($IC_{50}=6 \mu M$)	52 (7
91	Cyanopuupen	BAEC $(IC_{50} = II \mu M)$	53,67
	enone	$P-388 (IC_{50}=2 \mu g/mL)$	
		A-549($IC_{50}=2 \mu g/mL$)	
		H I-29 (IC ₅₀ =2 μ g/mL)	
.	0.1	$CV-1$ ($IC_{50}=2 \mu g/mL$)	(1 (7
92	21-	KB (MIC=5 μ g/mL)	64, 67
	chloropuupeh	$LOVO (MIC=1 \mu g/mL)$	
	enone	P-388 ($IC_{50}=0.2 \ \mu g/mL$)	
		A-549 ($IC_{50}=0.5 \ \mu g/mL$)	
		HT-29 ($IC_{50}=0.5 \ \mu g/mL$)	
		CV-1 (IC ₅₀ = $0.5 \mu g/mL$)	
		$GR (IC_{50}=6 \ \mu g/mL)$	
		DHFR (IC ₅₀ =5 μ g/mL)	
		TS ($IC_{50}=3 \mu g/mL$)	
		PROT ($IC_{50}=0.3 \ \mu g/mL$)	
		DNA (IC ₅₀ =1 μ g/mL)	
		RNA (IC ₅₀ >1 μ g/mL)	
		Topo II (IC ₅₀ =1 μ g/mL)	
		cholesteryl ester transfer pprotein (CETP) ($IC_{50}=0.3 \mu M$)	
93	Puupehedione	<i>P-338, A-549 and HT-29</i>	70
94	15-	<i>P-338, A-549 and HT-29</i>	24, 67,
	cyanopuupehe	KB (MIC=5 μ g/mL)	70
	nol	LOVO (MIC=2 μ g/mL)	
		P-388 (IC ₅₀ =2 µg/mL)	

		A-549 (IC ₅₀ =2 μg/mL)	
		HT-29 (IC ₅₀ =2 μg/mL)	
		$CV-1(IC_{50}=2 \ \mu g/mL)$	
97	15α-	KB cells (IC ₅₀ = $6 \mu g/mL$)	14, 73
	methoxypuup	Human Glioblastoma and Breast Cancer Models: the	
	ehenol	mode of action of 15a-methoxypuupehenol was that	
		Oral gavage delivery of 15a-MP inhibited the growth	
		of U251MG subcutaneous tumor xenografts in mice,	
		associated with apoptosis in the treated tumor	
		tissues.	
99	20-methoxy-	Scavenger Receptor-Class B Type 1 HepG2 (SR-B1	74
	9, 15-ene-	HepG2) stable cell line (IC ₅₀ = 1.78μ M)	
	puupehenol		
103	19-methoxy-	Scavenger Receptor-Class B Type 1 HepG2 (SR-B1	74
	9,15-ene-	HepG2) stable cell line (IC ₅₀ = 3.05μ M)	
	puupehenol		
104	BE-40644	<i>E. coli</i> TRX system (IC ₅₀ =0.12 µg/mL)	71
		human TRX system (IC ₅₀ =0.08 µg/mL)	72
		yeast GSSG reductase (IC ₅₀ =22 µg/mL)	
		inhibit the human thioredoxin system as the well as the	
		growth of several cancer cell lines.	
110	Phomoarcheri	KKU-100 (IC ₅₀ = 8.9 μg/mL)	38
	n C	KKU-M139 (IC ₅₀ = 8.9 µg/mL)	
		KKU-M156 (IC ₅₀ = 18.0 µg/mL)	
		KKU-M213 (IC ₅₀ = 15.4 µg/mL)	
		KKU-M214 (IC ₅₀ = 18.8 µg/mL)	
112	Austalide L	osteoclast differentiation inhibitory activity ($IC_{50}=2.0$	75
		μg/mL)	
113	Austalide V	osteoclast differentiation inhibitory activity ($IC_{50}=1.9$	75
		μg/mL)	
114	Austalide W	osteoclast differentiation inhibitory activity ($IC_{50}=2.5$	75
		μg/mL)	
115	17S-	osteoclast differentiation inhibitory activity ($IC_{50}=2.8$	75
	dihydroaustali	μg/mL)	
	de K		
116	Kampanol A	Ras rHFPTase (IC ₅₀ = 13 μ M)	38, 76
		KKU-M213 (IC ₅₀ = 19.6 µg/mL)	
117	Kampanol B	Ras rHFPTase (IC ₅₀ = 7 μ M)	76
119	Phomoarcheri	KKU-M213 (IC ₅₀ = 16.6 μg/mL)	38
	n A	KB (IC ₅₀ = 42.1 μ g/mL)	
120	Phomoarcheri	KKU-100 (IC ₅₀ = 8.0 µg/mL)	38
	n B	KKU-M139 (IC ₅₀ = $0.1 \ \mu g/mL$)	
		KKU-M156 (IC ₅₀ = 2.0 µg/mL)	
		KKU-M214 (IC ₅₀ = $5.0 \ \mu g/mL$)	

		KB (IC ₅₀ = 9.4 µg/mL)	
121	Pentacecilide	inhibit the synthesis of cholesteryl ester in mouse	77, 78
	А	macrophage (IC ₅₀ = 3.65μ M)	
		macrophages, and ACAT1- and ACAT2-CHO cells	
		$(IC_{50}=3.65, 1.09 \text{ and } 0.69 \ \mu\text{M})$	
122	Pentacecilide	inhibit the synthesis of cholesteryl ester in mouse	77, 78
	В	macrophage (IC ₅₀ = $4.76 \mu\text{M}$)	
		macrophages, and ACAT1- and ACAT2-CHO cells	
		$(IC_{50}=4.76, 10.8 \text{ and } 3.97 \mu \text{M})$	
125	Chrodrimanin	tyrosine phosphatase 1B (PTP1B) (IC_{50} = 8.5 µM)	79
	А		
130	Chrodrimanin	HL-60 cell (IC ₅₀ = $8.7 \mu g/mL$)	80
	F		
131	Chrodrimanin	protein tyrosine phosphatase 1B (PTP1B) (IC ₅₀ = 39.6	34
	G	μM)	
132	Chrodrimanin	protein tyrosine phosphatase 1B (PTP1B) (IC ₅₀ = 14.9	79
	Н	μM)	
145	3-acetyl-	HL-60 cell (IC ₅₀ = $8.1 \mu g/mL$)	80
	chrodrimanin		
	F		
147	Verruculide A	protein tyrosine phosphatase 1B (PTP1B) (IC ₅₀ = $8.4 \mu M$)	79
Benzoft	iran-spiro-naphth	ene type drimane meroterpenoids	
153	Stachartin A	osteoclast differentiation in bone marrow macrophage	89
	(stachybotrysi	cells via suppressing the RANKL-induced activation of	
	n)	p-ERK, p-JNK, pp38, c-Fos, and NFATc1	
154	K-76	pancreatic cholesterol esterase ($IC_{50}=0.2 \text{ mM}$)	81
155	L-671, 776	Myo-inositol mono-phosphatase (IC ₅₀ = 0.4 mM)	82, 83
	(factor B)	Myo-inositol 1,4,5-triphosphatase 3-kinase (IC_{50} = 3 mM)	
		IMPase enzyme inhibitory activity (IC ₅₀ =460 µM)	
156	Factor A	IMPase enzyme inhibitory activity (IC ₅₀ =70 µM)	83
157	Factor C	IMPase enzyme inhibitory activity (IC ₅₀ =200 µM)	83
158	Stachybotrydi	Human Protein Kinase CK2 (IC ₅₀ = 4.43 µM)	81, 84,
	al(Mer-	pancreatic cholesterol esterase (IC_{50} = 0.06 mM)	85
	NF5003 F)	AMV-protease (IC ₅₀ = 7.8 μ M)	
159	Mer-NF5003	AMV-protease (IC ₅₀ = 16.5 μ M)	85
	В		
160	Mer-NF5003	AMV-protease (IC ₅₀ = 12.8 μ M)	85, 86
	Е	K562	
162	Corallidictyal	protein kinase C	8, 87
	А	cultured vero (African green monket kidney) cells	
		L929 mouse fibroblasts	
163	Corallidictyal	protein kinase C	87
	В	cultured vero (African green monket kidney) cell	

		L929 mouse fibroblasts	
164	Corallidictyal	L929 mouse fibroblasts	8
	С		
165	Corallidictyal	L929 mouse fibroblasts	8
	D		
166	F1839-I	pancreatic cholesterol esterase (IC ₅₀ = 0.27 mM)	35, 81
		HepG2 (IC ₅₀ = 18.4 μ M)	
		NCI-H460 (IC ₅₀ =15.8 μM)	
		BGC823(IC ₅₀ = 21.9 μM)	
167	Sch 65676	CMV maturational protease (IC ₅₀ = 9.8 μ g/ml)	88
180	Stachybotrysi	HepG2 (IC ₅₀ = 24.7 μ M)	35
	n A		
181	Stachybotrysi	K562, Hela and HL60	84, 86
	n B	Human Protein Kinase CK2 (IC50= 13.42 µM)	
182	Stachybotrysi	K562, Hela and HL60	86
	n C		
186	Stachybotrysi	HepG2 (IC ₅₀ = 24.6 μ M)	35
	n G		
187	Stachybotrysi	K562, Hela and HL60	86
	n H		
188	Stachybotrydi	Human Protein Kinase CK2 (IC ₅₀ = 0.69μ M)	84
	al acetate		
189	Acetoxystach	Human Protein Kinase CK2 (IC50= 1.86 µM)	84
	ybotrydial		
	acetate		
	Inda	ane-fused-naphthene type drimane meroterpenoids	
191	Pelorol	PI3Kβ (IC ₅₀ = 38.17μM)	90, 91
		The compound pelorol exert cytotoxicity activity against	
		501Mel melanoma cells promoting apoptotic signaling	
		and inducing changes in miRNA expression and their	
		downstream effectors.	
195	19- <i>O</i> -	lung cancer PC-9 cell line (IC ₅₀ =9.2 μ M).	95
	methylpelorol		
197	Dasyscyphin	several human cell line	92
	В		
198	Dasyscyphin	several human cell line	27,92
	С	MDA-MB-435 (IC ₅₀ = 14.1 µM)	
		MDA-MB-231(IC ₅₀ = 12.2 μM)	
		OVCAR3 (IC ₅₀ = 10.4 μM)	
201	Dasyscyphin	MDA-MB-435 (IC ₅₀ = 4.1 µM)	27
	F	MDA-MB-231(IC ₅₀ = 8.2μ M)	
		OVCAR3 (IC ₅₀ = 16.2 μM)	
202	Dasyscyphin	MDA-MB-435 (IC ₅₀ = 19.7 µM)	27

	G	MDA-MB-231(IC ₅₀ > 25 μM)	
		OVCAR3 (IC ₅₀ >25 μM)	
204	Walsucochin	H ₂ O2-induced PC12 cell damage	93
	А		
205	Walsucochin	H ₂ O ₂ -induced PC12 cell damage	93
	В		
207	Walsucochino	mouse and human 11b-HSD1 inhibitors (IC ₅₀ = 13.4 μ M)	94
	id D		
208	Walsucochino	mouse and human 11b-HSD1 inhibitors (IC ₅₀ = 8.25μ M)	94
	id E		
	Bnapht	hane-fused-naphthene type drimane meroterpenoids	
218	Cyclozonaron	L-929, K-562, HeLa	44
	e	HM02 (GI ₅₀ = $5.7 \ \mu g/mL$)	
		HepG2 (GI ₅₀ = 9.6 μ g/mL)	
		MCF (GI ₅₀ >10 µg/mL)	
221	Neopetrosiqui	proliferation of the DLD-1 human colorectal	96
	none A	adenocarcinoma cell line (IC ₅₀ = $3.7 \mu M$)	
		PANC-1 human pancreatic carcinoma cell line($IC_{50}=6.1$	
		μΜ)	
		proliferation of the AsPC-1 human pancreatic carcinoma	
		cell (IC ₅₀ = 6.1μ M) line	
222	Neopetrosiqui	A-549 (IC ₅₀ = 8.3 μM)	96, 97
	none B	MCF-7(IC ₅₀ = 7.7 μM)	
		T-48 cell (IC ₅₀ = 11.5 μ M)	
		proliferation of the DLD-1 human colorectal	
		adenocarcinoma cell line (IC ₅₀ = 9.8 μ M)	
		PANC-1 human pancreatic carcinoma cell line(IC ₅₀ =	
		13.8 µM)	
	1	Other drimane type meroterpenoid	1
223	Bis(sulfato)-	inhibits the binding of [3H]-LTB4, to intact	98
	cyclosiphonod	humanneutrophils (IC ₅₀ = 44 μ M)	
	ictyol		

Table S6. Drimane meroterpenoids with antioxidant activity.

3.6 Antioxidant activity				
Nu	Compds	Species and bioactivity	Ref.	
mb				
	Substituted drimane type meroterpenoids			
41	Isozonarol	DPPH radical scavenging activity (EC ₅₀ = 71 μ M)	99	
42	Isozonarone	DPPH radical scavenging activity (EC ₅₀ = 145 μ M)	99	
67	Siphonodictyal A	DPPH radical-scavenging activity	100	
	sulfate			

71	13-[[2-	DPPH scavenging (IC ₅₀ = 1.51 mM)	101
	(hexyloxy)-	ABTS scavenging (IC ₅₀ = 1.88 mM)	
	2,5,5,8a-		
	tetramethyldecah		
	ydro-1-		
	naphthalenyl]		
	(methoxy)		
	methyl]benzenol		
82	Siphonodictyal	DPPH	8
	B1		
83	Siphonodictyal	DPPH	8
	B2		
84	Siphonodictyal	DPPH radical-scavenging activity	100
	B3		
	Benzoj	pyran-fused-naphthene type drimane meroterpenoids	
85	Chromazonarol	DPPH radical scavenging activity (EC ₅₀ = 71 μ M)	99
90	Puupehenone	2,2-diphenyl-1-picrylhydrazyl radical (DPPH) solution-	12, 22,
		based chemical assay and a 2',7'-	102,
		dichlorodihydrofluorescein diacetate (DCFH-DA)	103,104,
		5-HLO (IC ₅₀ = 0.76 μM)	105
		15-SLLO (IC ₅₀ = 2.4 µM)	
		12-HLO (IC ₅₀ = 8.3μ M)	
		$12-LOX (IC_{50} = 8.3 \ \mu M)$	
		15-LOX (IC ₅₀ = $0.76 \ \mu$ M)	
		$NOX(IC_{50} = 1.3 \ \mu M)$	
		inhibitor of the integrated electron transfer chain	
		08(NADH oxidase activity	
		2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging	
		activity (IC ₅₀ =32 μ M)	
92	21-	15-HLO (IC ₅₀ = 0.83 μM)	103, 104
	chloropuupeheno	15-SLLO (IC ₅₀ =2.4 μM)	
	ne	12-HLO (IC ₅₀ =0.71 μM)	
		12-LOX (IC ₅₀ = 0.7μ M)	
101	Puupehanol	average Ferric Reducing Antioxidant Power (FRAP)	22
		of 2500 µM.	
102	Puupehenol	Antioxidant	22
	Inda	ne-fused-naphthene type drimane meroterpenoids	
203	Akadisulfate A	DPPH radical-scavenging activity	100

Table S7. Drimane meroterpenoids with algicidal activity.

3.7 Algicidal activity				
Nu	Compds	Species and bioactivity	Ref.	
mb.				
Substituted drimane type meroterpenoids				

6	Zonarol	Heterosigma akashiwo,	106
		Chattonella antiqua,	
		Heterocapsa circularisquama	
8	Zonaroic acid	Heterosigma akashiwo,	106
		Chattonella antiqua,	
		Heterocapsa circularisquama	
41	Isozonarol	Heterosigma akashiwo,	106
		Chattonella marina,	
		Chattonella antiqua,	
		Heterocapsa circularisquama	
61	Yahazunol	Heterosigma akashiwo,	106
		Chattonella marina	
		Chattonella antiqua,	
		Heterocapsa circularisquama	
74	Zonarenone	Heterosigma akashiwo,	106
		Chattonella marina,	
		Chattonella antiqua,	
		Heterocapsa circularisquama	
Benzopyran-fused-naphthene type drimane meroterpenoids			
85	Chromazonarol	Heterosigma akashiwo,	106
		Chattonella antiqua,	
		Heterocapsa circularisquama	
148	Isochromazonaro	Heterosigma akashiwo,	106
	1	Chattonella antiqua,	
		Heterocapsa circularisquama	

Table S8. Drimane meroterpenoids with anti-inflammatory activity.

3.8 Anti-inflammatory activity			
Nu	Compds	Species and bioactivity	Ref.
mb.			
		Substituted drimane type meroterpenoids	
6	Zonarol	ROS production in SOZ-stimulated granulocytes.	48
10	Hyatellaquinone	ROS production in SOZ-stimulated granulocytes.	48
41	Isozonarol	Heterosigma akashiwo	106
		Chattonella marina	
		Chattonella antiqua	
		Heterocapsa circularisquama	
42	Isozonarone	3a-Hydroxysteroid dehydrogenase (3a-HSD)	48
43	20-O-Acetyl-21-	inhibited superoxide production by human	55
	hydroxy-ent-	neutrophils (IC ₅₀ = 3.0μ M)	
	isozonarol		
44	21-Hydroxy-ent-	inhibited superoxide production by human	55
	isozonarone	neutrophils (IC ₅₀ = 11.0 μ M)	

71	13-[[2-(hexyloxy)-	COX-1 (IC ₅₀ = 1.72 mM)	101	
	2,5,5,8a-	COX-2 (IC ₅₀ = 1.56 mM)		
	tetramethyldecahy	5-LOX (IC ₅₀ = 1.90 mM)		
	dro-1-			
	naphthalenyl]			
	(methoxy)			
	methyl]benzenol			
73	Wiedendiol A	ROS production in SOZ-stimulated granulocytes	48	
75	Spongiaquinone	ROS production in SOZ-stimulated granulocytes	48	
	Benzop	yran-fused-naphthene type drimane meroterpenoids		
88	Cyclospongiaquin	cyclospongiaquinone-1 showed anti-	107	
	one-1	inflammatory activity		
	Benzofuran-spiro-naphthene type drimane meroterpenoids			
175	Stachybotrolide	inhibiting the production of nitric oxide (NO) in	108	
	(stachybotrylacton	RAW264.7 cells (IC ₅₀ = 17.9 μM)		
	e)			
182	Stachybotrysin C	inhibiting the production of nitric oxide (NO) in	108	
		RAW264.7 cells (IC ₅₀ = 27.2µM)		
Indane-fused-naphthene type drimane meroterpenoids				
191	Pelorol	anti-inflammatory as an in vitro activator of the	109	
		inositol-5-phosphatase SHIP		
195	19- <i>O</i> -	inflammatory cytokines (IL-6, IL-1β,IL-8, andPEG2)	95	
	methylpelorol	in LPS-induced THP-1 cells with IC ₅₀ values of 5.1–		
		9.2 μM		

Table S9. Other drimane meroterpenoids with anti-feedant activity

3.9 Anti-feedant activity				
Nu	Compds	Species and bioactivity	Ref.	
mb.				
	Substituted drimane type meroterpenoids			
6	Zonarol	young abalone Haliotis discus hannai. (Ei= 0.85)	110	
9	Zonarone	young abalone Haliotis discus hannai. (Ei= 0.92)	110	
41	Isozonarol	young abalone Haliotis discus hannai. (Ei= 0.78)	110	
42	Isozonarone	young abalone Haliotis discus hannai. (Ei= 0.85)	110	
Benzopyran-fused-naphthene type drimane meroterpenoids				
85	Chromazonarol	young abalone Haliotis discus hannai. ($Ei=0.8$)	110	
90	Puupehenone	shrimp, palaemon sernus (IC ₅₀ = 4.0 mg/ml)	111	
Bnaphthane-fused-naphthene type drimane meroterpenoids				
218	Cyclozonarone	shrimp, <i>palaemon sernus</i> (IC ₅₀ = 4.0 mg/ml)	111	

Table S10. Other drimane meroterpenoids with immunomodulatory activity

|--|

Nu	Compds	Species and bioactivity	Ref.
mb			
	Benzopyr	an-fused-naphthene type drimane meroterpenoids	
90	Puupehenone	immunological response of T cells	37, 67, 112
		attached onto [Leu ²⁷]MART-1 ₂₆₋₃₅ , a modified	
		HLA-A2-associated decapeptide identified to	
		function as an epitope for melanoma-reactive	
		cytotoxic T lymphocytes	
91	Cyanopuupehenone	immunological response of T cells	37, 67,
92	21-	immunological response of T cells	37, 67,
	Chloropuupehenone		
93	Puupehedione	immunological response of T cells	37, 67,
94	Cyanopuupehenol	immunological response of T cells	37, 67,
96	15-Oxopuupehenol	immunological response of T cells	37, 67

References

- 1. K. Ishibashi, The Journal of Antibiotics, Ser. A, 1963, XV, 161-167.
- W. Fenical, J. J. Sims, D. Squatrito, R. M. Wing and P. Radlick, *J Org Chem*, 1973, 38, 2383-2386.
- 3. T. Sassa, A. Ishizaki, M. Nukina, M. Ikeda and T. Sugiyama, *Bioscience, Biotechnology, and Biochemistry*, 1998, **62**, 2260-2262.
- 4. L. E. Schmidt, S. T. Deyrup, J. Baltrusaitis, D. C. Swenson, D. T. Wicklow and J. B. Gloer, *J Nat Prod*, 2010, **73**, 404-408.
- 5. A. Hirose, H. Maeda, A. Tonouchi, T. Nehira and M. Hashimoto, *Tetrahedron*, 2014, **70**, 1458-1463.
- A. L. Lane, L. Mular, E. J. Drenkard, T. L. Shearer, S. Engel, S. Fredericq, C. R. Fairchild, J. Prudhomme, K. Le Roch, M. E. Hay, W. Aalbersberg and J. Kubanek, *Tetrahedron*, 2010, 66, 455-461.
- 7. X. Wang, N. Hu, W. Kong, B. Song and S. Li, *Eur. J. Med. Chem.*, 2022, 227, 113912.
- 8. A. Grube, M. Assmann, E. Lichte, F. Sasse, J. R. Pawlik and M. Kock, *Journal of Natural Products*, 2007, **70**, 504-509.
- 9. S. Kohmoto, O. J. McConnell, A. Wright, F. Koehn, W. Thompson, M. Lui and K. M. Snader, *Journal of Natural Products*, 1987, **50**, 336-336.
- B. N. Ravi, H. P. Perzanowski, R. A. Ross, T. R. Erdman and P. J. Scheuer, *Pure & Appl. Chem*, 1979, **51**, 1893-1900.
- 11. M. T. Hamann and P. J. Scheuer, J. Org. Chem., 1993, 58, 6565-6569.
- M. L. Ciavatta, M. P. Lopez Gresa, M. Gavagnin, V. Romero, D. Melck, E. Manzo, Y.-W. Guo, R. van Soest and G. Cimino, *Tetrahedron*, 2007, 63, 1380-1384.
- 13. W.-H. Xu, Y. Ding, M. R. Jacob, A. K. Agarwal, A. M. Clark, D. Ferreira, Z.-S. Liang and X.-C. Li, *Bioorganic & Medicinal Chemistry Letters*, 2009, **19**, 6140-6143.
- M.-L. Bourguet-Kondracki, F. Lacombe and M. Guyot, *Journal of Natural Products*, 1999, 62, 1304-1305.
- 15. J. C. Liermann, H. Kolshorn, H. Anke, E. Thines and T. Opatz, Journal of Natural

Products, 2008, 71, 1654-1656.

- 16. T. Sassa and H. Yoshikoshi, Agricultural and biological chemistry, 1983, 47, 187-189.
- 17. Y. Fu, P. Wu, J. Xue and X. Wei, J. Nat. Prod., 2014, 77, 1791-1799.
- 18. B. W. Sullivan, D. J. Faulkner, G. K. Matsumoto, C. H. He and J. Clardy, *The Journal* of Organic Chemistry, 1986, **51**, 4568-4573.
- B. Sullivan, P. Djura, D. E. McIntyre and D. J. Faulkner, *Tetrahedron*, 1981, 37, 979-982.
- X. Zhang, H. Y. Xu, A. M. Huang, L. Wang, Q. Wang, P. Y. Cao and P. M. Yang, *Chem Pharm Bull (Tokyo)*, 2016, 64, 1036-1042.
- B. Chen, Q. Zhao, Y.-C. Gu, L. Lan, C.-Y. Wang and Y.-W. Guo, *Mar. Drugs*, 2022, 20, 118.
- 22. K. Hagiwara, J. E. Garcia Hernandez, M. K. Harper, A. Carroll, C. A. Motti, J. Awaya, H.-Y. Nguyen and A. D. Wright, *J. Nat. Prod.*, 2015, **78**, 325-329.
- 23. K. A. El Sayed, P. Bartyzel, X. Shen, T. L. Perry, J. K. Zjawiony and M. T. Hamann, *Tetrahedron*, 2000, **56**, 949-953.
- 24. M. T. Hamann and P. J. Scheuer, 1991, **32**, 5671-5672.
- 25. D. M. Roll, J. K. Manning and G. T. Carter, J Antibiot (Tokyo), 1998, 51, 635-639.
- 26. Y.-J. Kwon, M.-J. Sohn, H.-J. Kim and W.-G. Kim, *Biol. Pharm. Bull.*, 2014, **37**, 1406-1410.
- L. Flores-Bocanegra, M. Augustinovic, H. A. Raja, S. J. Kurina, A. C. Maldonado, J. E. Burdette, J. O. Falkinham, C. J. Pearce and N. H. Oberlies, *Tetrahedron Lett.*, 2021, 68, 152896.
- 28. Q. Göthel and M. Köck, *Beilstein J Org Chem*, 2014, **10**, 613-621.
- 29. R. Talpir, A. Rudi, Y. Kashman, Y. Loya and A. Hizi, *Tetrahedron*, 1994, **50**, 4179-4184.
- D. S. Treitler, Z. Li, M. Krystal, N. A. Meanwell and S. A. Snyder, *Bioorg. Med. Chem. Lett.*, 2013, 23, 2192-2196.
- X. Lin, X. Zhou, F. Wang, K. Liu, B. Yang, X. Yang, Y. Peng, J. Liu, Z. Ren and Y. Liu, *Mar Drugs*, 2012, 10, 106-115.
- 32. H. Zhou, L. Li, W. Wang, Q. Che, D. Li, Q. Gu and T. Zhu, J. Nat. Prod., 2015, 78, 1442-1445.
- F.-D. Kong, Q.-Y. Ma, S.-Z. Huang, P. Wang, J.-F. Wang, L.-M. Zhou, J.-Z. Yuan, H.-F. Dai and Y.-X. Zhao, *J. Nat. Prod.*, 2017, **80**, 1039-1047.
- F.-D. Kong, R.-S. Zhang, Q.-Y. Ma, Q.-Y. Xie, P. Wang, P.-W. Chen, L.-M. Zhou, H.-F. Dai, D.-Q. Luo and Y.-X. Zhao, *Fitoterapia*, 2017, **122**, 1-6.
- 35. J. Zhao, J. Feng, Z. Tan, J. Liu, J. Zhao, R. Chen, K. Xie, D. Zhang, Y. Li, L. Yu, X. Chen and J. Dai, *J. Nat. Prod.*, 2017, **80**, 1819-1826.
- N. Nihashi, D. K. Inaoka, C. Tsuge, E. O. Balogun, Y. Osada, Y. Goto, Y. Matsumoto, T. Nara, T. Mogi, S. Harada and K. Kiyoshi, in *Kala Azar in South Asia: Current Status* and Sustainable Challenges, eds. E. Noiri and T. K. Jha, Springer International Publishing, Cham, 2016, DOI: 10.1007/978-3-319-47101-3_9, pp. 101-122.
- S. S. Nasu, B. K. S. Yeung, M. T. Hamann and P. J. Scheuer, J. Org. Chem., 1995, 60, 7290-7292.
- 38. C. Hemtasin, S. Kanokmedhakul, K. Kanokmedhakul, C. Hahnvajanawong, K. Soytong,

S. Prabpai and P. Kongsaeree, J. Nat. Prod., 2011, 74, 609-613.

- H. Hayashi, Y. Oka, K. Kai and K. Akiyama, *Biosci.*, *Biotechnol.*, *Biochem.*, 2012, 76, 1765-1768.
- 40. H. Hayashi, Y. Oka, K. Kai and K. Akiyama, *Biosci., Biotechnol., Biochem.*, 2012, **76**, 745-748.
- 41. Y. Xu, S. Furutani, M. Ihara, Y. Ling, X. Yang, K. Kai, H. Hayashi and K. Matsuda, *PLoS One*, 2015, **10**, e0122629/0122621-e0122629/0122612.
- 42. J. H. Kwak, F. J. Schmitz and M. Kelly, *Journal of Natural Products*, 2000, **63**, 1153-1156.
- 43. E. M. Wijeratne, P. A. Paranagama, M. T. Marron, M. K. Gunatilaka, A. E. Arnold and A. A. Gunatilaka, *J Nat Prod*, 2008, **71**, 218-222.
- 44. T. Laube, W. Beil and K. Seifert, *Tetrahedron*, 2005, **61**, 1141-1148.
- W.-J. He, X.-J. Zhou, X.-C. Qin, Y.-X. Mai, X.-P. Lin, S.-R. Liao, B. Yang, T. Zhang,
 Z.-C. Tu, J.-F. Wang and Y. Liu, *Nat. Prod. Res.*, 2017, **31**, 604-609.
- S. Poigny, T. Huor, M. Guyot and M. Samadi, *The Journal of Organic Chemistry*, 1999, 64, 9318-9320.
- 47. K. W. L. Yong, A. Jankam, J. N. A. Hooper, A. Suksamrarn and M. J. Garson, *Tetrahedron*, 2008, **64**, 6341-6348.
- 48. T. Laube, A. Bernet, H. M. Dahse, I. D. Jacobsen and K. Seifert, *Bioorganic & Medicinal Chemistry*, 2009, **17**, 1422-1427.
- K. Kono, M. Tanaka, T. Ogita, T. Hosoya and T. Kohama, *Journal of Antibiotics*, 2000, 53, 459-466.
- 50. S. M. Fang, C. B. Cui, C. W. Li, C. J. Wu, Z. J. Zhang, L. Li, X. J. Huang and W. C. Ye, *Mar Drugs*, 2012, **10**, 1266-1287.
- 51. S. Uesugi, Y. Honmura, M. Nishiyama, K. Kusakabe, A. Tonouchi, T. Yamashita, M. Hashimoto and K. I. Kimura, *Bioorg Med Chem*, 2019, **27**, 115161.
- 52. Y. Fu, P. Wu, J. Xue, H. Li and X. Wei, *Mar. Drugs*, 2015, **13**, 3360-3367.
- M. E. Castro, M. González-Iriarte, A. F. Barrero, N. Salvador-Tormo, R. Muñoz-Chápuli, M. A. Medina and A. R. Quesada, *Int J Cancer*, 2004, **110**, 31-38.
- 54. V. Mukku, R. A. Edrada, F. J. Schmitz, M. K. Shanks, B. Chaudhuri and D. Fabbro, *Journal of Natural Products*, 2003, **66**, 686-689.
- C. E. McNamara, L. Larsen, N. B. Perry, J. L. Harper, M. V. Berridge, E. W. Chia, M. Kelly and V. L. Webb, *J Nat Prod*, 2005, 68, 1431-1433.
- 56. E. Perez-Garcia, E. Zubia, M. J. Ortega and J. L. Carballo, *Journal of Natural Products*, 2005, **68**, 653-658.
- 57. I. E. Mohamed, H. Gross, A. Pontius, S. Kehraus, A. Krick, G. Kelter, A. Maier, H.-H. Fiebig and G. M. König, *Organic Letters*, 2009, **11**, 5014-5017.
- I. E. Mohamed, S. Kehraus, A. Krick, G. M. König, G. Kelter, A. Maier, H.-H. Fiebig, M. Kalesse, N. P. Malek and H. Gross, *Journal of Natural Products*, 2010, 73, 2053-2056.
- 59. L. Zhang, Y. Shen, F. Wang, Y. Leng and J.-K. Liu, *Phytochemistry*, 2010, **71**, 100-103.
- Q. Deng, X. Yu, L. Xiao, Z. Hu, X. Luo, Y. Tao, L. Yang, X. Liu, H. Chen, Z. Ding, T. Feng, Y. Tang, X. Weng, J. Gao, W. Yi, A. M. Bode, Z. Dong, J. Liu and Y. Cao, *Cell Death Dis.*, 2013, 4, e804.

- 61. X. Wang, N. Hu, W. Kong, B. Song and S. Li, *Eur. J. Med. Chem.*, 2022, 227, 113912.
- 62. V. K. Thu, D. T. Trang, D. T. T. Hang, N. X. Nhiem, T. H. Quang, P. H. Yen, B. H. Tai and P. V. Kiem, *Phytochem. Lett.*, 2021, **44**, 115-119.
- 63. T. Kikuchi, K. Narita, K. Saijo, C. Ishioka and T. Katoh, *Eur. J. Org. Chem.*, 2016, **2016**, 5659-5666.
- S. J. Coval, M. A. Conover, R. Mierzwa, A. King, M. S. Puar, D. W. Phife, J.-K. Pai, R.
 E. Burrier, H.-S. Ahn, G. C. Boykow, M. Patel and S. A. Pomponi, *Bioorganic & Medicinal Chemistry Letters*, 1995, 5, 605-610.
- 65. A. F. Barrero, E. J. Alvarez-Manzaneda, M. M. Herrador, R. Chahboun and P. Galera, *Bioorganic & Medicinal Chemistry Letters*, 1999, **9**, 2325-2328.
- R. E. Longley, O. J. McConnell, E. Essich and D. Harmody, *J Nat Prod*, 1993, 56, 915-920.
- M. T. Hamann, P. J. Scheuer and M. Kelly-Borges, *Journal of Organic Chemistry*, 1993, 58, 6565-6569.
- S. J. Robinson, E. K. Hoobler, M. Riener, S. T. Loveridge, K. Tenney, F. A. Valeriote, T. R. Holman and P. Crews, *J Nat Prod*, 2009, 72, 1857-1863.
- 69. M. Gordaliza, Mar Drugs, 2010, 8, 2849-2870.
- A. F. Barrero, E. J. Alvarez-Manzaneda, R. Chahboun, M. Cortés and V. Armstrong, *Tetrahedron*, 1999, 55, 15181-15208.
- K. Torigoe, N. Wakasugi, N. Sakaizumi, T. Ikejima, H. Suzuki, K. Kojiri and H. Suda, *J Antibiot (Tokyo)*, 1996, 49, 314-317.
- 72. H. Tsujimori and K. Mori, *Biosci Biotechnol Biochem*, 2001, **65**, 167-171.
- 73. T. S. Hilliard, G. Miklossy, C. Chock, P. Yue, P. Williams and J. Turkson, *Mol. Cancer Ther.*, 2017, **16**, 601-613.
- H. A. Wahab, N. B. Pham, J. N. A. Hooper, R. J. Quinn, H. A. Wahab, T. S. T. Muhammad, T. S. T. Muhammad and J. N. A. Hooper, *Mar. Drugs*, 2016, 15, 6.
- 75. W. Wang, J. Lee, K.-J. Kim, Y. Sung, K.-H. Park, E. Oh, C. Park, Y.-J. Son and H. Kang, *J. Nat. Prod.*, 2019, **82**, 3083-3088.
- S. B. Singh, D. L. Zink, M. Williams, J. D. Polishook, M. Sanchez, K. C. Silverman and R. B. Lingham, *Bioorganic & Medicinal Chemistry Letters*, 1998, 8, 2071-2076.
- H. Yamazaki, K. Kobayashi, D. Matsuda, K. Nonaka, R. Masuma, S. Ōmura and H. Tomoda, *The Journal of Antibiotics*, 2009, 62, 195-200.
- 78. H. Yamazaki, N. Ugaki, D. Matsuda and H. Tomoda, J. Antibiot., 2010, **63**, 315-318.
- 79. H. Yamazaki, W. Nakayama, O. Takahashi, R. Kirikoshi, Y. Izumikawa, K. Iwasaki, K. Toraiwa, K. Ukai, H. Rotinsulu, D. S. Wewengkang, D. A. Sumilat, R. E. P. Mangindaan and M. Namikoshi, *Bioorg. Med. Chem. Lett.*, 2015, 25, 3087-3090.
- H. Qiao, S.-H. Zhang, Y. Dong, Y. Yang, R. Xu, B. Chen, Y. Wang, T.-J. Zhu, C.-B. Cui, G.-G. Zhang and C.-W. Li, *Nat. Prod. Res.*, 2022, 36, 1834-1841.
- K. Sakai, K. Watanabe, K. Masuda, M. Tsuji, K. Hasumi and A. Endo, *J Antibiot (Tokyo)*, 1995, 48, 447-456.
- Y. K. Lam, C. F. Wichmann, M. S. Meinz, L. Guariglia, R. A. Giacobbe, S. Mochales, L. Kong, S. S. Honeycutt, D. Zink, G. F. Bills and et al., *J Antibiot (Tokyo)*, 1992, 45, 1397-1403.
- 83. S. Stefanelli, F. Sponga, P. Ferrari, C. Sottani, E. Corti, C. Brunati and K. Islam, J

Antibiot (Tokyo), 1996, 49, 611-616.

- 84. S. Haidar, F. M. Juergens, D. Aichele, A. Jagels, H.-U. Humpf and J. Jose, *Molecules*, 2021, **26**, 4453.
- 85. R. Kaneto, K. Dobashi, I. Kojima, K. Sakai, N. Shibamoto, T. Yoshioka, H. Nishida, R. Okamoto, H. Akagawa and S. Mizuno, *J Antibiot (Tokyo)*, 1994, **47**, 727-730.
- X.-h. Ma, W.-m. Zheng, K.-h. Sun, X.-f. Gu, X.-m. Zeng, H.-t. Zhang, T.-h. Zhong, Z.z. Shao and Y.-h. Zhang, *Nat. Prod. Res.*, 2019, **33**, 386-392.
- J. A. Chan, A. J. Freyer, B. K. Carté, M. E. Hemling, G. A. Hofmann, M. R. Mattern, M.
 A. Mentzer and J. W. Westley, *J Nat Prod*, 1994, 57, 1543-1548.
- 88. M. Chu, R. Mierzwa, I. Truumees, A. King, M. Patel, J. Pichardo, A. Hart, B. Dasmahapatra, P. R. Das and M. S. Puar, *Tetrahedron Letters*, 1996, **37**, 3943-3946.
- J. W. Kim, S.-K. Ko, H.-M. Kim, G.-H. Kim, S. Son, G. S. Kim, G. J. Hwang, E. S. Jeon, K.-S. Shin, I.-J. Ryoo, Y.-S. Hong, H. Oh, K. H. Lee, N.-K. Soung, D. Hashizume, T. Nogawa, S. Takahashi, B. Y. Kim, H. Osada, J.-H. Jang and J. S. Ahn, *J. Nat. Prod.*, 2016, **79**, 2703-2708.
- 90. Y. Luo, H. Chen, J. Weng and G. Lu, *Mar. Drugs*, 2016, 14, 118/111-118/112.
- S. Carpi, S. Carpi, B. Polini, S. Brogi, V. Calderone, P. Nieri, E. Scoditti, B. Polini, S. Brogi, V. Calderone, P. Nieri, P. Proksch and S. S. Ebada, *Mar. Drugs*, 2022, 20, 427.
- V. Rojas de la Parra, V. Mierau, T. Anke and O. Sterner, *Tetrahedron*, 2006, **62**, 1828-1832.
- 93. Z.-W. Zhou, S. Yin, H.-Y. Zhang, Y. Fu, S.-P. Yang, X.-N. Wang, Y. Wu, X.-C. Tang and J.-M. Yue, *Organic Letters*, 2008, **10**, 465-468.
- 94. M.-L. Han, Y. Shen, Y. Leng, H. Zhang and J.-M. Yue, *RSC Adv.*, 2014, **4**, 19150-19158.
- 95. J. Li, F. Yang, Z. Wang, W. Wu, L. Liu, S.-P. Wang, B.-X. Zhao, W.-H. Jiao, S.-H. Xu and H.-W. Lin, *Org. Biomol. Chem.*, 2018, **16**, 6773-6782.
- 96. P. L. Winder, H. L. Baker, P. Linley, E. A. Guzmán, S. A. Pomponi, M. C. Diaz, J. K. Reed and A. E. Wright, *Bioorg Med Chem*, 2011, **19**, 6599-6603.
- 97. I. Chayboun, E. Boulifa, A. I. Mansour, F. Rodriguez-Serrano, E. Carrasco, P. J. Alvarez,
 R. Chahboun and E. Alvarez-Manzaneda, *J Nat Prod*, 2015, **78**, 1026-1036.
- 98. K. B. Killday, A. E. Wright, R. H. Jackson and M. A. Sills, *Journal of Natural Products*, 1995, **58**, 958-960.
- M. Kumagai, K. Nishikawa, H. Matsuura, T. Umezawa, F. Matsuda and T. Okino, *Molecules*, 2018, 23, 1214/1211-1214/1218.
- L. Shubina, A. Kalinovsky, T. Makarieva, S. Fedorov, S. Dyshlovoy, P. Dmitrenok, I. Kapustina, E. Mollo, N. Utkina, V. Krasokhin, V. Denisenko and V. Stonik, *Natural product communications*, 2012, 7, 487-490.
- 101. K. Chakraborty, T. Antony and M. Joy, *Algal Research*, 2019, **40**, 101472.
- S. Takamatsu, T. W. Hodges, I. Rajbhandari, W. H. Gerwick, M. T. Hamann and D. G. Nagle, *J Nat Prod*, 2003, 66, 605-608.
- 103. T. Amagata, S. Whitman, T. A. Johnson, C. C. Stessman, C. P. Loo, E. Lobkovsky, J. Clardy, P. Crews and T. R. Holman, *J Nat Prod*, 2003, 66, 230-235.
- B. Martinez-Poveda, A. R. Quesada, M. A. Medina, A. R. Quesada and M. A. Medina, Mar. Drugs, 2017, 15, 325.
- 105. N. K. Utkina, V. A. Denisenko and V. B. Krasokhin, Tetrahedron Lett., 2011, 52, 3765-

3768.

- 106. F. Ishibashi, S. Sato, K. Sakai, S. Hirao and K. Kuwano, *Biosci., Biotechnol., Biochem.*, 2013, 77, 1120-1122.
- 107. D.-S. Lee, I. H. Hwang, N.-K. Im, G.-S. Jeong and M. K. Na, *Nat. Prod. Sci.*, 2015, 21, 268-272.
- 108. P. Zhang, Y. Li, C. Jia, J. Lang, S.-I. Niaz, J. Li, J. Yuan, J. Yu, S. Chen and L. Liu, *RSC Adv.*, 2017, **7**, 49910-49916.
- 109. L. Yang, D. E. Williams, A. Mui, C. Ong, G. Krystal, R. van Soest and R. J. Andersen, *Organic Letters*, 2005, **7**, 1073-1076.
- 110. K. Kurata, K. Taniguchi and M. Suzuki, *Phytochemistry*, 1996, **41**, 749-752.
- K. L. Cheney, A. White, I. W. Mudianta, A. E. Winters, M. Quezada, R. J. Capon, E. Mollo and M. J. Garson, *PLoS One*, 2016, **11**, e0145134/0145131-e0145134/0145116.
- C. Douat-Casassus, N. Marchand-Geneste, E. Diez, C. Aznar, P. Picard, S. Geoffre, A. Huet, M.-L. Bourguet-Kondracki, N. Gervois, F. Jotereau and S. Quideau, *Molecular BioSystems*, 2006, 2, 240-249.