Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2024

Supporting Materials

Fast Accessing the Lattice Thermal Conductivity and Phonon

Quasiparticle Spectra of $Mo_2TiC_2T_2$ (T = -O and -F) and Janus

Mo₂TiC₂OF MXenes from Machine Learning Potentials

Yiding Qiu, Ziang Jing, Haoliang Liu, Huaxuan He, KaiWu, Yonghong Cheng,

Bing Xiao*

School of Electrical Engineering, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an Shaanxi, 710049, P.R. China

*Correspondence Author: bingxiao84@xjtu.edu.cn

 Mo2TiC2
 -47.6

 Mo2TiC2O2
 -65.2

 Mo2TiC2F2
 -65.2

 Mo2TiC2F2
 -58.6

 Mo2TiC2OF
 -61.9

Table S1 The equilibrium energies (eV) of Mo_2TiC_2 and $Mo_2TiC_2T_2$ (T = -O and -F) and Janus Mo_2TiC_2OF MXenes.

Fig. S1 Comparison of total energies and atomic forces between MTP and DFT calculations for training datasets: (a)-(b): Mo_2TiC_2 ; (c)-(d): $Mo_2TiC_2O_2$; (e)-(f): $Mo_2TiC_2F_2$; (g)-(h): Janus-Mo_2TiC_2OF.

Fig. S2 Comparison of total radial distribution function (RDF) and bond angle distribution function (ADF) between MTP and DFT calculations for MXenes: (a-b): Mo₂TiC₂; (c-d): Mo₂TiC₂O₂; (e-f): Mo₂TiC₂F₂; (g-h): Janus-Mo₂TiC₂OF.

Fig. S3 Atomic species resolved phonon density of states obtained using MTPs: (a): Mo₂TiC₂; (b): Mo₂TiC₂O₂; (c): Mo₂TiC₂F₂; (d): Janus-Mo₂TiC₂OF.

Fig. S4 The harmonic phonon dispersions of $Mo_2TiC_2F_2$ calculated by different functionals with various k-points mesh: PBE functional: (a) $2 \times 2 \times 1$; (b) $3 \times 3 \times 1$; (c) $4 \times 4 \times 1$; r²SCAN: (d) $3 \times 3 \times 1$).

Fig. S5 The phonon vibration eigenvectors with imaginary frequency at Gamma point ($\Gamma(0, 0,0)$) of Mo₂TiC₂F₂. The length of the arrow represents the amplitude of the specific atom vibrations.

Fig. S6: The electron localization function (ELF) of MXenes: (a) Mo₂TiC₂; (b) Mo₂TiC₂O₂; (c) Mo₂TiC₂F₂; (d) Mo₂TiC₂OF.

Fig. S7 Mode resolved three-phonon scattering phase space diagrams of MXenes including the total three-phonon scattering space, the combination process and the splitting process: (a1)-(a3): Mo_2TiC_2 ; (b1)-(b3): $Mo_2TiC_2O_2$; (c1)-(c3): $Mo_2TiC_2F_2$; (d1)-(d3): Janus-Mo_2TiC_2OF. ZA: the out-of-plane flexural mode; LA and TA: the in-plane longitudinal and transverse acoustic modes; O: optical modes.

Fig. S8 Mode-resolved phonon group velocities at room temperature (300 K) for MXenes: (a): Mo₂TiC₂; (b): Mo₂TiC₂O₂; (c): Mo₂TiC₂F₂; (d): Janus-Mo₂TiC₂OF. ZA: out-of-plane flexural mode; TA: in-plane transverse acoustic mode; LA: in-plane longitudinal acoustic mode; O: optical branches.

Fig. S9 Mode-Grüneisen parameters obtained from MTPs for MXenes: (a) Mo_2TiC_2 ; (b) $Mo_2TiC_2O_2$; (c) $Mo_2TiC_2F_2$; (d) Janus-Mo_2TiC_2OF.

Fig. S10: The lattice thermal conductivity of MXenes converges with Q-grid: (a) Mo_2TiC_2 ; (b) $Mo_2TiC_2O_2$; (c) $Mo_2TiC_2F_2$; (d) Mo_2TiC_2OF .

Fig. S11 Unfiltered and filtered normalized HCACF with correlation time: (a-c) Mo₂TiC₂; (d-f) Mo₂TiC₂O₂; (g-i) Mo₂TiC₂F₂; (j-l) Mo₂TiC₂OF.

Fig. S12: Thermal conductivities along the x, y, and z directions with correlation time (a-c) Mo_2TiC_2 ; (d-f) $Mo_2TiC_2O_2$; (g-i) $Mo_2TiC_2F_2$; (j-l) Mo_2TiC_2OF .

Fig. S13: The EMD method predicts the thermal conductivity of MXenes at 300K with the size of the simulation domain: (a) Mo_2TiC_2 ; (b) $Mo_2TiC_2O_2$; (c) $Mo_2TiC_2F_2$; (d) Mo_2TiC_2OF .

Spectral Energy Density

Fig. S14 Phonon quasi-particle spectral energy density of Mo₂TiC₂ monolayer obtained from classic molecular dynamics simulations using MTP: (a): 400 K; (b): 500 K.

Fig. S15 Phonon quasi-particle spectral energy density of Mo₂TiC₂O₂ monolayer obtained from classic molecular dynamics simulations using MTP: (a): 400 K; (b): 500 K.

Fig. S16 Phonon quasi-particle spectral energy density of $Mo_2TiC_2F_2$ monolayer obtained from classic molecular dynamics simulations using MTP: (a): 400 K; (b): 500 K.

Fig. S17 Phonon quasi-particle spectral energy density of Janus-Mo₂TiC₂OF monolayer obtained from classic molecular dynamics simulations using MTP: (a): 100 K; (b): 200 K.

Fig. S18 Phonon quasi-particle spectral energy density of Mo_2TiC_2 monolayer at Γ -point in the Brillouin zone obtained from classic molecular dynamics simulations using MTP: (a): 400 K; (b): 500 K.

Fig. S19 Phonon quasi-particle spectral energy density of $Mo_2TiC_2O_2$ monolayer at Γ -point in the Brillouin zone obtained from classic molecular dynamics simulations using MTP: (a): 400 K; (b): 500 K.

Fig. S20 Phonon quasi-particle spectral energy density of $Mo_2TiC_2F_2$ monolayer at Γ -point in the Brillouin zone obtained from classic molecular dynamics simulations using MTP: (a): 400 K; (b): 500 K.

Fig. S21 Phonon quasi-particle spectral energy density of Janus-Mo₂TiC₂OF monolayer at Γ-point in the Brillouin zone obtained from classic molecular dynamics simulations using MTP: (a): 100 K;
(b): 200 K.