Electronic Supplementary Information (ESI)

Ultralow-content Pt nanodots/Ni₃Fe nanoparticles: interlayer nanoconfinement synthesis and overall water splitting

Yajun Ni,^{a,‡} Wei Zhang,^{a,c,‡} Yaru Li,^a Shui Hu,^{b,*} Hong Yan,^{a,*} and Sailong Xu^{a,c,*}

^aState Key Laboratory of Chemical Resource Engineering, ^bState Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China. E-mail: xusl@mail.buct.edu.cn (S.X.); yanhong@mail.buct.edu.cn (H.Y.); hushui@mail.buct.edu.cn

°Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324003, China

[‡]These authors contributed equally to this work.

Experimental Section

Theoretical calculations

For Ni₃Fe, γ -NiOOH, the real active species of the oxygen evolution reaction catalyst, is used as a prototype, and K⁺ and protons are cross-solvated because 1 M KOH is used as the electrolyte in the experiments.¹⁻⁴ The cell parameters are $\alpha = 90^{\circ}$, β = 90°, $\gamma = 90^{\circ}$, a = 8.523 Å, b = 9.991 Å, and c = 15.469 Å. For Pt/Ni₃Fe, the (100) crystallographic plane of 4 × 3 × 1 is chosen for doping Pt nanodots. Because (100) is a high index crystal plane, this plane exposes unsaturated metal sites, which facilitates the adsorption and desorption of oxygenated intermediates at the metal sites. The chemical formula of Ni₃Fe is (Fe)₃K₄(Ni)₉H₁₇O₃₂, and the chemical formula of Pt/Ni₃Fe is (Fe)₃PtK₄(Ni)₈H₁₇O₃₂.

For Pt, the Pt(111) is employed with the lattice parameters of a = 8.32 Å, b = 8.32 Å, c = 24.53 Å. A 15 Å vacuum layer is built up in the *c*-axis to avoid modeling in the periodicity in the *c*-axis direction.

Computational Methods

Density Functional Theory is calculated using Materials studio software 6.1 (Accelrys Software Inc., San Diego, CA). The calculations in this paper were all carried out using the CASTEP module.^{5,6} The Perdew-Burke-Ernzerhof (PBE) exchange

correlation in the generalized gradient approximation $(GGA)^7$ was used in the calculations. However, transition metal systems containing *d* electrons have strong electron-electron interactions that cannot be accurately described by DFT methods. Hubbard-corrected density functional theory was used. The electronic density of states of the hydroxyl oxides were calculated by setting the Ueff values for Ni, and Fe to 6.45,⁸ and 4.30 eV,⁹ respectively. The energy and displacement convergence standards are 5×10^{-5} eV and 0.005 Å, respectively. The k-point grid in the Brillouin zone is set to be $3 \times 3 \times 1$ by the Monkhorst-Pack scheme. The cut-off energy is 420 eV.

When the pH is fixed at 0, the entire OER¹⁰ can be defined as

 $2H_2O \rightarrow O_2 + 4H^+ + 4e^- \#(1)$

The following are the four electronic reaction steps of the OER approach: In the first step, the catalyst (denoted as *) absorbs an H₂O molecule from the solvent and releases H^++e^- , leading to the formation of *OH. Next, the H^++e^- pair continues to separate from *OH, leaving *O. Then, another H₂O molecule joins and reacts with *O to form *OOH, while releasing H^++e^- . Finally, *OOH can form O₂ and return to *, while releasing a H^+ + e^- pair.

$$R1 : H_2O + * \to *OH + H^+ + e^- \#(2)$$

$$R2 : *OH \to *O + H^+ + e^- \#(3)$$

$$R3 : *O + H_2O \to *OOH + H^+ + e^- \#(4)$$

$$R4 : *OOH \to * + O_2 + H^+ + e^- \#(5)$$

In the calculation of the OER overpotential, the standard hydrogen electrode approximation is used, and the standard hydrogen electrode is an assumed ideal state in

which $\frac{1}{2}$ H₂ \rightarrow H⁺ + e^{-.11} The Energy, entropic contribution and zero point energies¹² of hydrogen, oxygen, and water molecules are listed in Table S1.

The Gibbs free energy difference for all of the above primitive steps (ΔG_{*OH} , ΔG_{*O} , ΔG_{*OH}) contains an electron transfer calculated by Eq. (6):

 $\Delta G = \Delta E + \Delta ZPE - T\Delta S + \Delta G_U + \Delta G_{pH} \# (6)$

In this equation ΔE , ΔZPE and ΔS represent the difference in adsorption energy, zero point energy, and entropy, respectively. The adsorption energy ΔE (E_{ads}) was calculated using DFT. The values of ΔZPE and ΔS were calculated using standard thermodynamic data and density functional theory. $\Delta G_U = -eU$, where U represents the potential based on a standard hydrogen electrode. ΔG_{pH} represents the Gibbs free energy correction with respect to pH, which can be calculated by $\Delta G_{pH} = -K_B T \ln 10 \cdot pH$, with K_B being the Boltzmann constant (1.380649 × 10⁻²³ J K⁻¹), where the temperature is 298.15 K. The sum of ΔG_1 , ΔG_2 , ΔG_3 and ΔG_4 is equal to the Gibbs free-energy change for the total reaction $2H_2O(l) \rightarrow 2H_2(g) + O_2(g)$, i.e., 4.92 eV. Since, in the calculation of the Gibbs function, the standard hydrogen electrode assumption, and in that assumption pH = 0 and U = 0, both ΔG_U and ΔG_{pH} are 0 in Eqs. 6. The value of the OER overpotential (η^{OER}) is unaffected by either the electrolyte pH or the applied bias voltage (U).

The change in Gibbs free energy during OER is defined as

$$\Delta G_1 = \Delta G_{*_{OH}} \# (7)$$

$$\Delta G_2 = \Delta G_{*_O} - \Delta G_{*_{OH}} \# (8)$$

$$\Delta G_3 = \Delta G_{*_{OOH}} - \Delta G_{*_O} \# (9)$$

$$\Delta G_4 = 4.92 - \Delta G_{*_{OOH}} \# (10)$$

A theoretical system is constructed to systematically evaluate the performance of different catalysts for oxygen evolution reaction in alkaline electrolytes. The free energies of the four-electron transfer radical steps of the ideal OER catalysts at zero potential should be equal, i.e., 4.92 V / 4 = 1.23 V vs. the standard reversible hydrogen electrode (RHE), in other words, the Gibbs free energies of all the four-electron transfer reactions at a starting potential of 1.23 V are 0 eV, and the exceeding value is defined as an overpotential if the actual potential is greater than 1.23 V. The overpotential η_{OER} is given by Eq. (11):

$$\eta^{\text{OER}} = \left(\frac{\Delta G^{OER}}{e}\right) - 1.23 V \cdot \Delta G^{\text{OER}} = \max\left[\Delta G_1, \Delta G_2, \Delta G_3, \Delta G_4\right] \#(11)$$

The Gibbs free energy calculation for hydrogen evolution reaction can be calculated by Eq. (12):

$$\Delta G_{*_{H}} = \Delta E_{*_{H}} + \Delta ZPE - T\Delta S\#(12)$$

 ΔG_{*H} is the adsorption energy of hydrogen atom on the crystal surface, ΔZPE is the zero point energy difference between adsorbed hydrogen and hydrogen in the gas phase, and ΔS is the entropy change of *H adsorption.

References

- J. Zaffran, M. B. Stevens, C. D. M. Trang, M. Nagli, M. Shehadeh, S. W. Boettcher and M. Caspary Toroker, *Chem. Mater.*, 2017, 29, 4761-4767.
- 2. H. Shin, H. Xiao and W. A. Goddard, J. Am. Chem. Soc., 2018, 140, 6745-6748.
- J. G. Baker, J. R. Schneider, J. A. Garrido Torres, J. A. Singh, A. J. M. Mackus, M. Bajdich and S. F. Bent, ACS Appl. Energy Mater., 2019, 2, 3488-3499.
- X. Zheng, J. Tang, A. Gallo, J. A. Garrido Torres, X. Yu, C. J. Athanitis, E. M. Been, P. Ercius, H. Mao, S. C. Fakra, C. Song, R. C. Davis, J. A. Reimer, J. Vinson, M. Bajdich and Y. Cui, *PNAS*, 2021, **118**, e2101817118.
- 5. M. D. Segall, J. D. L. Philip, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark and M. C. Payne, *Condens. Matter*, 2002, **14**, 2717.
- M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias and J. D. Joannopoulos, *Rev. Mod. Phys.*, 1992, 64, 1045-1097.
- 7. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.
- A. Jain, G. Hautier, S. P. Ong, C. J. Moore, C. C. Fischer, K. A. Persson and G. Ceder, *Phys. Rev. B*, 2011, 84, 045115.
- 9. J. M. P. Martirez and E. A. Carter, J. Am. Chem. Soc., 2018, 141, 693-705.
- E. Skúlason, T. Bligaard, S. Gudmundsdóttir, F. Studt, J. Rossmeisl, F. Abild-Pedersen, T. Vegge, H. Jónsson and J. K. Nørskov, *Phys. Chem. Chem. Phys.*, 2012, 14, 1235-1245.
- 11. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jónsson, *J. Phys. Chem. B*, 2004, **108**, 17886.
- 12. P. Liao, J. A. Keith and E. A. Carter, J. Am. Chem. Soc., 2012, 134, 13296-13309.

Figure S1 The XRD pattern of the PtCl₆²⁻/MgNiFe-LDH/GO precursor.

Figure S2 TEM images of (a) $Pt/Ni_3Fe/rGO$ after etching MgO, and (b) $Pt/Ni_3Fe/rGO$ that was directly derived from a Mg-free $PtCl_6^{2-}/NiFe-LDH$ precursor.

Figure S3 The HRTEM image shows the presence of pores of the $Pt/Ni_3Fe/rGO$ catalyst after selectively removing the MgO that was formed from the MgNiFe-LDH during the calcination.

Figure S4 (a) N_2 adsorption and desorption isotherms and (b) the pore size distribution of the Pt/MgO/Ni₃Fe/rGO intermediate composite, (c) N_2 adsorption and desorption isotherms and (d) the pore size distribution of the Pt/Ni₃Fe/rGO composite after the selective removal of MgO.

Figure S5 Comparison of XPS spectra: (a) a full scan survey and (b) Mg1s spectra for the Pt/MgO/Ni₃Fe/rGO intermediate composite; (c) a full scan survey and (d) Mg 1s spectra for the Pt/Ni₃Fe/rGO composite, showing no signal of Mg 1s.

Figure S6 (a) Raman spectrum and (b) TG analysis of the $Pt/Ni_3Fe/rGO$ composite.

Figure S7 Electrochemical impedance spectra of $Pt/Ni_3Fe/rGO$, $Pt/MgO/Ni_3Fe/rGO$, Ni_3Fe/rGO , IrO_2 for the OER.

Figure S8 XPS spectra of the $Pt/Ni_3Fe/rGO$ composite after OER stability test: (a) a full scan survey, (b) Pt 4f, (c) Ni 2p, (d) Fe 2p, (e) C 1s and (f) O 1s.

Figure S9 Electrochemical impedance spectra of Pt/Ni₃Fe/rGO, Pt/MgO/Ni₃Fe/rGO, Ni₃Fe/rGO, Pt/C for the HER.

Figure S10 Cyclic voltammograms (CVs) for (a) Pt/Ni₃Fe/rGO, (b) Pt/MgO/Ni₃Fe/rGO, (c) Ni₃Fe/rGO measured at different scan rates from 10 to 50 mV/s and (d) corresponding C_{dl} at 0.2 V vs Ag/AgCl.

Figure S11 LSV curves of OER normalized by ECSA of $Pt/Ni_3Fe/rGO$, $Pt/MgO/Ni_3Fe/rGO$, and Ni_3Fe/rGO .

Figure S12 Optimized structures of (a) Ni_3Fe and (b) Pt(111).

Energy,	entropic	contribution,	zero po	int energy	, and	Gibbs	free	energy	of H ₂ ,	O ₂ ,	and
H ₂ O.											

Molecular	Energy $(\mathbf{e}\mathbf{V})$ Entropic $(\mathbf{e}\mathbf{V})$		Zero point	Gibbs free	
wolecular	Energy (ev)		energy (eV)	energy	
$H_2(g)$	-30.87	0.40	0.27	-31.00	
$O_2(g)$	-868.41	0.63	0.10	-868.94	
$H_2O(l)$	-467.83	0.67	0.57	-467.93	

ICP analysis for Ni, Fe, Pt of Pt/Ni₃Fe/rGO composite.

Element	Ni	Fe	Pt
Content /wt%	33.15	10. 42	0.71

 R_{ct} values of Pt/Ni_3Fe/rGO, Pt/MgO/Ni_3Fe/rGO, Ni_3Fe/rGO and IrO_2 for the OER.

Catalyst	Pt/Ni ₃ Fe/rGO	Pt/MgO/Ni ₃ Fe/rGO	Ni ₃ Fe/rGO	IrO ₂
R_{ct}/Ω	1.3	4.1	2.2	9.3

 R_{ct} values of Pt/Ni_3Fe/rGO, Pt/MgO/Ni_3Fe/rGO, Ni_3Fe/rGO and IrO_2 for the HER.

Catalyst	Pt/Ni ₃ Fe/rGO	Pt/MgO/Ni ₃ Fe/rGO	Ni ₃ Fe/rGO	Pt/C
R_{ct}/Ω	3.2	6.7	5.6	1.4

Comparison of the OER performance between the $Pt/Ni_3Fe/rGO$ composite and those Pt-based electrocatalysts reported previously (in 1.0 M KOH).

Catalysts	Pt content (wt%)	Overpotential (mV)	Tafel (mv dec ⁻¹)	References
Pt-NiO/Gr-SUS	0.09	240	101.2	1
Pt-SnFeNi/CF	0.42	-	103	2
NF-Na-Fe-Pt	0.60	261	39.68	3
Pt-aFe ₂ O ₃ /NF	2.05	304	49.6	4
Pt-WO ₃ -x@rGO	1.58	174	48	5
Pt ₁ @Fe-N-C	2.10	310	62	6
Pt-Ni ₃ Se ₂ @NiOOH/NF	8.20	-	31	7
Pt/NiFeV	16.80	-	48	8
Pt/LiCoO ₂	30.00	258	46.8	9
PtIr/IrOx-50	50.97	266	44	10
Pt-NiFe PBA	-	210	43.5	11
NM@Pt _{0.15} -Ni(OH) ₂	-	309	52	12
B-Pt-NiFe-LDH	0.781	208	30.4	13
Pt/Ni ₃ Fe/rGO	0.71	240	35	This work

Comparison of the HER performance between the $Pt/Ni_3Fe/rGO$ composite and those Pt-based electrocatalysts reported previously (in 1.0 M KOH).

Catalysts	Pt content (wt%)	Overpotential (mV)	Tafel (mv dec ⁻¹)	References
Pt-NiO/Gr-SUS	0.09	79	41	1
Pt-SnFeNi/CF	0.42	20	-	2
NF-Na-Fe-Pt	0.60	31	35.98	3
Pt-aFe ₂ O ₃ /NF	2.05	90	50.6	4
Pt-WO ₃ -x@rGO	1.58	37	35	5
Pt ₁ @Fe-N-C	2.10	60	42	6
Pt-Ni ₃ Se ₂ @NiOOH/NF	8.20	46	45	7
Pt/NiFeV	16.80	19	33	8
Pt/LiCoO ₂	30.00	61	39.5	9
PtIr/IrOx-30	69.80	20	38	10
Pt-NiFe PBA	-	29	58.3	11
Pt/SnS ₂	0.37	117	69	14
hcp Pt-Ni	30.16	65	78	15
Pt-Ni/LDH	5.50	52	47	16
Pt1/Co(OH) ₂ /C	1.41	50	48.7	17
Pt/Ni ₃ Fe/rGO	0.71	76	43	This work

Comparison of overall-water-splitting performance at 10 mA cm⁻² between the $Pt/Ni_3Fe/rGO$ composite and those Pt-based electrocatalysts reported previously (in 1.0 M KOH).

Catalysts	Pt content (wt%)	Overall voltage (V)	Durability (h)	References
Pt-NiO/Gr-SUS	0.09	1.6	12	1
NF-Na-Fe-Pt	0.60	1.56	12	3
Pt-aFe ₂ O ₃ /NF	2.05	1.51	50	4
Pt-WO _{3-x} @rGO	1.58	1.55	12	5
Pt-Ni ₃ Se ₂ @NiOOH/NF	8.20	1.52	12	7
Pt-NiMoO ₄ -GO/NF	4.63	1.515	48	18
Pt-CoS ₂ /CC	4.5	1.55	20	19
Pt-Cu@CuxO NWs/3DF	0.74	1.56	27	20
Pt-Ni _{2/3} Fe _{1/3} (OH) ₂	6.15	-	15	21
PtCo-FeCo PBAs	8.4	1.68	50	22
Pt/VC	2.84	1.59	12	23
Pt/Ni ₃ Fe/rGO	0.71	1.55	50	This work

References

- S. Jeong, H. D. Mai, K.-H. Nam, C.-M. Park and K.-J. Jeon, ACS Nano, 2022, 16, 930-938.
- S. Li, R. Ma, Y. Lu, Y. Pei, M. Yang, J. Wang and D. Liu, *J. Mater. Chem. A*, 2020, 8, 5919-5926.
- Y. Zhao, Y. Gao, Z. Chen, Z. Li, T. Ma, Z. Wu and L. Wang, *Appl. Catal. B*, 2021, 297, 120395.
- 4. B. Ye, L. Huang, Y. Hou, R. Jiang, L. Sun, Z. Yu, B. Zhang, Y. Huang and Y. S23

Zhang, J. Mater. Chem. A, 2019, 7, 11379-11386.

- D. Yin, Y.-D. Cao, D.-F. Chai, L.-L. Fan, G.-G. Gao, M.-L. Wang, H. Liu and Z. Kang, *Chem. Eng. J*, 2022, 431, 133287.
- X. Zeng, J. Shui, X. Liu, Q. Liu, Y. Li, J. Shang, L. Zheng and R. Yu, Adv. Energy Mater., 2017, 8, 1701345.
- X. Zheng, Y. Cao, X. Han, H. Liu, J. Wang, Z. Zhang, X. Wu, C. Zhong, W. Hu and Y. Deng, *Sci. China Mater.*, 2019, 62, 1096-1104.
- Y. Feng, Z. Li, S. Li, M. Yang, R. Ma and J. Wang, J. Energy Chem., 2022, 66, 493-501.
- X. Zheng, P. Cui, Y. Qian, G. Zhao, X. Zheng, X. Xu, Z. Cheng, Y. Liu, S. X. Dou and W. Sun, *Angew. Chem. Int. Ed.*, 2020, **59**, 14533-14540.
- H. Huang, L. Fu, W. Kong, H. Ma, X. Zhang, J. Cai, S. Wang, Z. Xie and S. Xie, Small, 2022, 18, 2201333.
- Z. Chen, D. Liu, Y. Gao, Y. Zhao, W. Xiao, G. Xu, T. Ma, Z. Wu and L. Wang, Sci. China Mater., 2021, 65, 1217-1224.
- J. Zhang, M. Yang, X. Zhu, J. Dang, J. Ma, B. Liu, T. Huang, M. Ouyang and F. Yang, *Chem. Eng. J.*, 2023, 476, 146576.
- L. Tan, H. Wang, C. Qi, X. Peng, X. Pan, X. Wu, Z. Wang, L. Ye, Q. Xiao, W. Luo, H. Gao, W. Hou, X. Li and T. Zhan, *Appl. Catal. B*, 2024, **342**, 123352.
- 14. F. Xia and F. Yang, *Energy Fuels*, 2022, **36**, 4992-4998.
- Z. Cao, Q. Chen, J. Zhang, H. Li, Y. Jiang, S. Shen, G. Fu, B.-a. Lu, Z. Xie and L. Zheng, *Nat. Commun.*, 2017, 8, 15131.
- W. Yi, R. Yu, H. Jiang, J. Wu and G. J. Cheng, *Adv. Funct. Mater.*, 2024, 34, 2308575.
- A. Pei, R. Xie, Y. Zhang, Y. Feng, W. Wang, S. Zhang, Z. Huang, L. Zhu, G. Chai, Z. Yang, Q. Gao, H. Ye, C. Shang, B. H. Chen and Z. Guo, *Energy Environ. Sci.*, 2023, 16, 1035-1048.
- J. Zhang, S. Zhang, X. Zhang, Z. Ma, Z. Wang and B. Zhao, J. Colloid Interf. Sci., 2023, 650, 1490-1499.

- X. Han, X. Wu, Y. Deng, J. Liu, J. Lu, C. Zhong and W. Hu, *Adv. Energy Mater.*, 2018, 8, 1800935.
- 20. D. T. Tran, H. T. Le, T. L. Luyen Doan, N. H. Kim and J. H. Lee, *Nano Energy*, 2019, **59**, 216.
- L. Wang, L. Zhang, W. Ma, H. Wan, X. Zhang, X. Zhang, S. Jiang, J. Y. Zheng and Z. Zhou, *Adv. Funct. Mater.*, 2022, **32**, 2203342.
- 22. C. Zeng, Q. Li, Y. You, L. Sun, W. Cheng, X. Zheng, S. Liu and Q. Wang, *Int. J. Hydrogen Energy*, 2022, **47**, 35149.
- 23. N. Wang, X. Bo and M. Zhou, ACS Appl. Mater. Interfaces, 2022, 14, 23332-23341.