Supporting Information

Exploring the potential of CuCoFeTe@CuCoTe yolk-shelled microrods in supercapacitor applications

Dorsa Dehghanpour Farashah¹, Maliheh Abdollahi^{2‡}, Akbar Mohammadi Zardkhoshoui^{1*}, and Saied Saeed Hosseiny Davarani^{1*}

¹Department of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran, Iran.

² Department of Chemistry, University of Isfahan, Isfahan, Iran.

[‡]Current Address: Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany.

Corresponding authors: *Tel: +98 21 22431661; Fax: +98 21 22431661; E-mail: ss-hosseiny@sbu.ac.ir

(S.S.H. Davarani); and mohammadi.bahadoran@gmail.com (A. Mohammadi Zardkhoshoui)

Fig. S1 (a, b) FESEM images of the MIL-88A. (c, d) TEM images of the MIL-88A.

Fig. S2 EDX spectrum of the MIL-88A.

Fig. S3 EDX spectrum of the CFLDH-ZIF67.

Fig. S4 EDX spectrum of the CCFLDH-CCLDH.

Fig. S5 EDX spectrum of the CCFT-CCT.

Fig. S6 FESEM mapping images of the CCFT-CCT.

Fig. S7 (a) XRD pattern of the MIL-88A. (b) XRD pattern of the CFLDH-ZIF67. (c) XRD pattern of the CCFLDH-CCLDH.

Fig. S8 Survey spectrum of the CCFT-CCT.

Fig. S9 (a) CV curves of the CCFLDH-CCLDHYSMR from 10 to 50 mV s⁻¹. (b) CV curves of the CFLDH-

ZIF67 from 10 to 50 mV s⁻¹. (c) CV curves of the MIL-88A from 10 to 50 mV s⁻¹.

Fig. S10 (a) GCD curves of the CCFLDH-CCLDHYSMR from 1 to 45 A g^{-1} . (b) GCD curves of the CFLDH-ZIF67 from 1 to 45 A g^{-1} . (c) GCD curves of the MIL-88A from 1 to 45 A g^{-1} .

Fig. S11 Longevity of the MIL-88A, CFLDH-ZIF67, and CCFLDH-CCLDHYSMR electrodes at 25 A g-

¹.

Fig. S12 EIS curves of the CCFT-CCTYSMR before and after 10000 cycles.

Fig. S13 FESEM image of the CCFT-CCTYSMR after 10000 cycles.

Fig. S14 FESEM mapping images of the CCFT-CCTYSMR after 10000 cycles.

Fig. S15 XRD pattern of the CCFT-CCTYSMR before and after 10000 GCD cycles.

Fig. S16 (a) CV plots of the AC from 10 to 50 mV s⁻¹. (b) GCD plots of the AC from 1 to 30 A g⁻¹. (c) Rate capability of the AC electrode.

Fig S. 17 CV plots of AC (negative electrode) and CCFT-CCTYSMR (positive electrode) at 50 mV s⁻¹in three-electrode cell.

Fig. S18 CV plots of the AC||CCFT-CCTYSMR at various potential window at 20 mV s⁻¹ from 1.0 to 1.7 V.

Composition	Capacity (C/g)	Cycles, retention	Rate capability	ED (Wh kg ⁻¹)	Reference
MnSe ₂ /CoSe ₂ -rGO	1139 at 1 A g ⁻¹	5000, 98.5%	80% at 20 A g ⁻¹	45.8	1
CoZnSe@CNTsCN Fs	1040.1 at 1 A g ⁻¹	50000, 97.2%	52.3% at 30 A g ⁻¹	61.4	2
Ni _{0.33} Co _{0.67} Te	472.3 at 1 A g ⁻¹	5000, 92%	60.4% at 20 A g ⁻¹	54	3
rGO-CCSe	724 at 1 A g ⁻¹	6000, 91.5%	71% at 60 A g ⁻¹	57.8	4
СоТе	354 at 1 A g ⁻¹	5000, 76.9%	90.2% at 20 A g ⁻¹	32.9	5
NiSe-Ni _{0.85} Se	669 at 1 A g ⁻¹	5000, 80%	69% at 20 A g ⁻¹	41	6
CuSe@MnSe	635.32 at 1 A g ⁻¹	7000, 91.62%	60.3% at 30 A g ⁻¹	19.4	7
CMS-DSHNC	1029.8 at 1 A g ⁻¹	7000, 91.5%	76.14% at 50 A g ⁻¹	45	8
CCFT-CCTYSMR	1512 at 1 A g ⁻¹	10000, 91.86 (3 E)	84.45% at 45 A g ⁻¹	63.46	This study

Table S1. Comparison of the performance of the CCFT-CCTYSMR with other previously reported

electrode materials.

References

1 H. Xuan, G. Zhang, X. Han, R. Wang, X. Liang, Y. Li and P. Han, J. Alloys Compd., 2021, 863,

158751.

2 L.-P. Lv, C. Zhi, Y. Gao, X. Yin, Y. Hu, D. Crespy and Y. Wang, *Nanoscale*, 2019, **11**, 13996-14009.

- 3 S. Zhang, D. Yang, M. Zhang, Y. Liu, T. Xu, J. Yang and Z.-Z. Yu, *Inorg. Chem. Front.*, 2020, 7, 477–486.
- 4 S. E. Moosavifard, A. Mohammadi, M. Ebrahimnejad Darzi, A. Kariman, M. M. Abdi and G. Karimi, *Chem. Eng. J.*, 2021, **415**, 128662.
- 5 M. Xiao, Y. Su, M. Zhao and B. Du, Nanotechnology, 2020, 31, 55706.
- 6 Y. Bai, W. Shen, K. Song, S. Zhang, Y. Wang, T. Xu, J. Xu, S. Dai and X. Wang, *J. Electroanal. Chem.*, 2021, **880**, 114795.
- 7 G. Tang, X. Zhang, B. Tian, P. Guo, J. Liang and W. Wu, Chem. Eng. J., 2023, 471, 144590.
- 8 M. Amiri, S. S. Hosseiny Davarani, S. E. Moosavifard and Y.-Q. Fu, J. Colloid Interface Sci., 2022, 616, 141-151.