Supporting information

Rapid Microwave-Assisted Synthesis and Characterization of a Novel CuCoTe Nanocomposite Material for Optoelectronic and Dielectric Applications

S. Supriya¹, S. Das¹, S. K. Samal², S. Senapati^{1*}, R. Naik^{1*}

¹Department of Engineering and Materials Physics, Institute of Chemical Technology-Indian Oil Odisha Campus, Bhubaneswar, 751013, India

²Department of Electronics and Communication Engineering, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751030, India

*Corresponding authors: subrata.uu@gmail.com; ramakanta.naik@gmail.com

Fig. S1 FESEM images of CuCoTe nanocomposites (a) CuCoTe-1, (b) CuCoTe-2, (c) CuCoTe-3, (d) CuCoTe-4, and (e) CuCoTe-5 at 50 nm (synthesized at 180 W).

Fig. S2 EDX spectra of CuCoTe nanocomposites (a) CuCoTe-1, (b) CuCoTe-2, (c) CuCoTe-3, and (d) CuCoTe-5 (synthesized at 180 W).

Fig. S3 FESEM images of CuCoTe nanocomposites (a) CuCoTe-6, (b) CuCoTe-7, (c) CuCoTe-8, (d) CuCoTe-9, and (e) CuCoTe-10 at 50 nm (synthesized at 360 W).

Fig. S4 EDX spectra of CuCoTe nanocomposites (a) CuCoTe-6, (b) CuCoTe-7, (c) CuCoTe-8, and (d) CuCoTe-10 (synthesized at 360 W).

Fig. S5 Variation of (a) ε_r , (b) tan δ , and (c) σ_{ac} of CuCoTe-10 sample with temperature at different frequencies.

Fig. S6 Variation of (a) ϵ_r , (b) tan δ , and (c) σ_{ac} of CuCoTe-10 sample with frequency at different temperatures.

Sl.	Material	Applications		Reference
No.				
1	Cu ₂ Te	Optoelectronic	Photodetector:	1
			Detectivity: 1.3×10^9 Jones	
			Detection range: 600-1500	
2	Cu ₂ Te	Optoelectronic	Direct band gap: 2.04 eV	2
			Indirect band gap: 3.05 eV	
3	CoTe ₂	Dielectric	Absorption property: 0.2 -2.0	3
			THz	
4	CuInZnSe ₃	Dielectric	In the temp. range 60 $^{\circ}C < T <$	4
			150 °C, passive carriers inside the	
			material are activated by energy	
			from the outside.	
5	Cu _{2-x} Te	Dielectric	The charge-discharge current	5
			density of the battery kept stable	
			at around 90 mAhg ⁻¹ even after	
			5000 cycles.	
6	Bi ₂ Te ₃ /G	Dielectric	Li-ion batteries:	6
			Charge capacity- 158 mAh g ⁻¹	
7	CdTe	Optoelectronic	Used as absorber layer in CdTe	7
8	РbТе	Optoelectronic	Solar cell:	8
			Quantum efficiency:	
			above 120% (external)	
			exceeding 150 % (internal)	
9	MoTe ₂ -based	Optoelectronic	Photodetector:	9
	photodetector		Detection range: 0.6-1.55 µm,	
			stable and fast photo response	

 Table S1: Comparison of materials for optoelectronic and dielectric applications.

References

- [1] B. S. Farag and S. A. Khodier, *Thin Solid Films*, 1991, 205, 52-57.
- [2] P. Kumar and K. Singh, Cryst. Growth Des., 2009, 9, 3089–3094.
- [3] Z. Zhang, Z. Cai, L. Xia, D. Zhao, F. Fan and Y. Huang, ACS Appl. Mater. Interfaces, 2021, 13, 30967–30979.
- [4] S. H. Jabarov, S. I. Ibrahimova, F. V. Hajiyeva, E. M. Huseynov, and Y. I. Aliyev, *Arab. J. Sci. Eng.*, 2022, **47**, 7817-7823.
- [5] C. Han, Z. Li, W. J. Li, S. L. Chou and S. X. Dou, J. Mater. Chem. A, 2014, 2, 11683–11690.
- [6] F. Tu, J. Xie, G. Cao and X. Zhao, *Mater.*, 2012, 5, 1275–1284.
- [7] S. Chander and M. S. Dhaka, *Mater. Sci. Semicond. Process*, 2015, 40, 70–712.

[8] M. L. Bohm, T. C. Jellicoe, M. Tabachnyk, N. J. Davis, F. Wisnivesky-Rocca-Rivarola, C. Ducati, B. Ehrler, A. A. Bakulin and N. C. Greenham, *Nano Lett.* 2015, **15**, 7987–7993.

[9] H. Huang, J. Wang, W. Hu, L. Liao, P. Wang, X. Wang, F. Gong, Y. Chen, G. Wu and W. Luo, *Nanotechnology*, 2016, **27**, 445201.