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Supplementary Figure 1: Phonon dispersion of KNO in the R3m phase (Γ = 0.0, 0.0, 0.0; X =

0.5, 0.0, 0.0; Y = 0.0, 0.5, 0.0; Z = 0.0, 0.0, 0.5; R = 0.5, 0.5, 0.5; T = 0.0, 0.5, 0.5).
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Supplementary Figure 2: Phonon dispersion of KNO in the Pm3̄m phase stabilized by pho-

toexcitation; carrier denisty in the conduction band is n = 2.69 · 1021cm−3. (Γ = 0.0, 0.0, 0.0;

X = 0.0, 0.5, 0.0; M = 0.5, 0.5, 0.0; R = 0.5, 0.5, 0.5).
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Supplementary Figure 3: Phonon dispersion at T = 300 K of KNO in the Pm3̄m phase stabilized

by photoexcitation; carrier denisty in the conduction band is n = 2.69 · 1021cm−3. Phonons were

renormalized with a normal-mode-decomposition technique [1]. (Γ = 0.0, 0.0, 0.0; X = 0.0, 0.5, 0.0;

M = 0.5, 0.5, 0.0; R = 0.5, 0.5, 0.5).
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Supplementary Figure 4: Phonon dispersion at T = 300 K of KNO in the Amm2 phase. Phonons

were renormalized with a normal-mode-decomposition technique [1]. Similar results were also

obtained from the QSCAILD [2, 3] method. (Y = −0.5, 0.5, 0.0; Γ = 0.0, 0.0, 0.0; R = 0.0, 0.5, 0.5;

Z = 0.0, 0.0, 0.5).
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Supplementary Figure 5: Grüneisen parameter, γ, computed beyond the quasiharmonic approxi-

mation, by a linear combination of the third-order force constants.
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Phonon Irradiation Figure in

population conditions main text

R3m fBE dark 3

Amm2 renorm300 K dark 3

Pm3̄m fBE light 3, 7a

Pm3̄m renorm300 K dark 3, 7b

Pm3̄m renorm800 K dark 7c

Supplementary Table 1. Summary of how κ, as displayed in Figure 3 and 7, has been computed

in the different cases. The first column indicates how phonon population at a given temperature

was accounted for: fBE indicates that phonons were computed in the standard way by finite

displacements at zero Kelvin and that phonon states were then populated following Bose-Einstein

statistics; renorm300 K indicates that an explicit finite temperature calculations of phonons at 300 K

was also carried out (see Methods); similarly for renorm800 K . The second column indicates the

irradiation state, dark vs. light, of each phase. We recall here that photoexcitation was achieved

by tuning the smearing of the electron distribution function (see Methods). The third column

inidicates in which Figure(s) os the main text the corresponding κ(T ) is shown.
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