Electronic Supplementary Information

Enhanced Electrocatalytic Oxygen Evolution Reaction by Photothermal Effect and Its Induced Micro-electric Field

Feng Duan,^a Qian Zou,^a Junzhe Li,^a Xiaozhi Yuan,^a Xun Cui,^c Chuan Jing,^d Shengrong Tao,^d Xijun Wei,^{*a} Huichao He^{*b} and Yingze Song^{*a}

^aState Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China.

^bInstitute of Environmental Energy Materials and Intelligent Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, P. R. China.

^cState Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P. R. China.

^dCollege of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China

*Email: <u>xijunwei1992@swust.edu.cn (</u>Xijun Wei)

*Email: <u>hehuichao@cqust.edu.cn (</u>Huichao He)

*Email: <u>yzsong@swust.edu.cn</u>(Yingze Song)

Fig. S1 The electrode pictures of (a) nickle foam (NF), (b) $NiFe(OH)_y/NF$, (c) NiS_x/NF and (d) $NiS_x@NiFe(OH)_y/NF$.

Fig. S2 (a)-(e) EDS mapping for $NiS_x@NiFe(OH)_y/NF$, (f) EDS analysis result of $NiS_x@NiFe(OH)_y/NF$.

Fig. S3 SEM image of NiS_x/NF.

Fig. S4 XRD pattern of electrodeposited $NiS_x@NiFe(OH)_y$ on the fluorine-doped tin oxide ($NiS_x@NiFe(OH)_y$ /FTO).

Fig. S5 The static droplet contact angles for (a) NF and (b) $NiS_x@NiFe(OH)_y/NF$.

Fig. S6 The electrode pictures of (a) FTO, (b) $NiFe(OH)_y/FTO$, (c) $NiS_x@NiFe(OH)_y/FTO$.

Fig. S7 OER performance of NiFe(OH)_y/FTO and NiS_x@NiFe(OH)_y/FTO: (a) LSV curves, (b) EIS spectra.

Fig. S8 survey XPS scan of $NiS_x@NiFe(OH)_y/NF$, $NiFe(OH)_y/NF$ and NiS_x/NF .

Fig. S9 High-resolution XPS comparison of Fe 2p for $NiS_x@NiFe(OH)_y/NF$ and $NiFe(OH)_y/NF$.

Fig. S10 CV curves of (a) NF, (b) NiS_x/NF , (c) $NiFe(OH)_y/NF$ and (d) $NiS_x@NiFe(OH)_y/NF$ at different scan rates (10, 20, 30, 40, and 50 mV/s).

Fig. S11 The device picture of photothermal effect assist OER.

Fig. S12 TOF values of $NiS_x@NiFe(OH)_y/NF$ under and without NIR light.

Fig. S13 CV curves of (a) NF, (b) $NiS_x@NiFe(OH)_y/NF$, (c) $NiS_x@NiFe(OH)_y/NF$ -NIR at different scan rates (10, 20, 30, 40, and 50 mV/s). (d) ECSA data of $NiS_x@NiFe(OH)_y/NF$ and $NiS_x@NiFe(OH)_y/NF$ -NIR.

Fig. S14 *J*-*T* curves of $NiS_x@NiFe(OH)_y/NF$ at 1.6 V vs. RHE under and without NIR light.

Fig. S15 XRD patterns of $NiS_x@NiFe(OH)_y/NF$ after *J-T* test under NIR light $(NiS_x@NiFe(OH)_y/NF$ -After NIR), $NiS_x@NiFe(OH)_y/NF$ and NF.

Fig. S16 CV curves of (a) NF, (b) NiS_x/NF , (c) NiS_x/NF -NIR at different scan rates (10,

20, 30, 40, and 50 mV/s). (d) ECSA data of $NiS_x\!/NF$ and $NiS_x\!/NF\text{-}NIR.$

Fig. S17 CV curves of (a) NF, (b) NiFe(OH)_y/NF, (c) @NiFe(OH)_y/NF-NIR at different scan rates (10, 20, 30, 40, and 50 mV/s). (d) ECSA data of NiFe(OH)_y/NF and NiFe(OH)_y/NF-NIR.

Fig. S18 High-resolution XPS comparison of Ni 2p in $NiS_x@NiFe(OH)_y/NF$ before and after NIR light irradiation.

Table S1 Tafel slope comparison of $\mathrm{NiS}_x@\mathrm{NiFe}(\mathrm{OH})_y/\mathrm{NF}$ to recently reported NiFebased

Electrocatalyst	Tafel	Testing condition	Reference
	slope (mV		
	dec ⁻¹)		
NiS _x @NiFe(OH) _y /NF	38.0	1.0 M KOH+NIR light	This work
NiS _x @NiFe(OH) _y /NF	45.1	1.0 M KOH	This work
Ni _{0.3} Fe _{0.7} -LDH@NF	56.68	1.0 M KOH	[1]
NiS/LDH/NF-5	61.2	1.0 M KOH	[2]
NiFeB	31.13	1.0 M KOH	[3]
NiFe/NiFeOOH	65.0	1.0 M KOH	[4]
A-NiFe NS/CuS	41	1.0 M KOH	[5]
Fe ₂ O ₃ /Fe _{0.64} Ni _{0.36} @C-800	82.98	1.0 M KOH	[6]
NiFe@C	87.6	1.0 M KOH	[7]
NiFe 2-1	58.6	1.0 M KOH	[8]
NiFe/NiFe:Pi	38	1.0 M KOH	[9]
fcc-Ni ₃ Fe/C	72	1.0 M KOH	[10]
Ni ₅ P ₄ /NiP ₂ /NiFe LDH	46.6	1.0 M KOH	[11]
NiFe(OH) _x /NiFe-MOF	52.05	1.0 M KOH	[12]
NiFe/NiFe-OH	41	1.0 M KOH	[13]
NiFe alloy	51.9	1.0 M KOH	[14]
FeOOH@Fe ₂ O ₃ @Ni(OH) ₂ /NF	60.15	1.0 M KOH	[15]
NiFe-HD/pre-NF	81	1.0 M KOH	[16]

Electrocatalysts for OER.

Electrode	$Rs(\Omega)$	$Rct\left(\Omega ight)$	CPE
NF	2.52 (0.45)	3.17 (0.97)	0.02 (3.27)
NiS _x /NF	2.37 (0.41)	1.15 (2.06)	0.13 (4.51)
NiFe(OH) _y /NF	2.60 (0.49)	0.61 (3.38)	0.08 (8.41)
NiS _x @NiFe(OH) _y /NF	2.14 (0.43)	0.50 (4.39)	0.24 (8.91)
NiS _x @NiFe(OH) _y /NF-NIR	2.10 (0.34)	0.44 (3.63)	0.22 (8.02)

Table S2. Fitted Values of the Equivalent Circuit Shown in Fig. 2d and Fig. 4c.

Table S3 The oxygen generation rate on $NiS_x@NiFe(OH)_y/NF$ in 1.0 M KOH at 1.6 V vs.RHE for 8 h in the presence and absence of NIR light irradiation (808 nm, 2 W cm⁻²).

Electrocatalyst	$N_{O_2} (\mathrm{mmol}\ \mathrm{h}^{-1})$
NiS _x @NiFe(OH) _y /NF	0.58
NiS _x @NiFe(OH) _y /NF-NIR	0.44

References

- Y. Zhai, X. Ren, Y. Sun, D. Li, B. Wang and S. Liu, *Appl. Catal. B*, 2023, 323, 122091.
- (2) Z. Wang, X. Mou, D. Li, C. Song and D. Wang, Int. J. Hydrog. Energy, 2022, 47, 38124-38133.
- (3) H. Liao, G. Ni, P. Tan, Y. Liu, K. Chen, G. Wang, M. Liu and J. Pan, *Appl. Catal. B*, 2022, **317**, 121713.
- (4) D. Peng, C. Hu, X. Luo, J. Huang, Y. Ding, W. Zhou, H. Zhou, Y. Yang, T. Yu, W. Lei and C. Yuan, *Small*, 2022, **19**, 2205665.
- (5) H. Gao, W. Sun, X. Tian, J. Liao, C. Ma, Y. Hu, G. Du, J. Yang and C. Ge, *ACS Appl. Mater. Interfaces*, 2022, **14**, 15205-15213.
- (6) F. Zhou, M. Gan, D. Yan, X. Chen and X. Peng, Small, 2023, 19, 2208276.
- (7) X. Wu, F. Yang and G. Shen, Int. J. Hydrog. Energy, 2022, 47, 18955-18962.
- (8) X. An, Q. Hu, W. Zhu, L. Liu, Y. Zhang and J. Zhao, Appl. Phys. A, 2021, 127: 865.
- (9) Y. Li and C. Zhao, ACS Catal., 2017, 7, 2535-2541.
- (10)G. Wei, Y. Shen, X. Zhao, Y. Wang, W. Zhang and C. An, *Adv. Funct. Mater.*, 2021, **32**, 2109709.
- (11)L. Yu, H. Zhou, J. Sun, I. K. Mishra, D. Luo, F. Yu, Y. Yu, S. Chen and Z. Ren, J. Mater. Chem. A, 2018, 6, 13619-13623.
- (12) D. Liu, H. Xu, C. Wang, C. Ye, R. Yu and Y. Du, J. Mater. Chem. A, 2021, 9, 24670-24676.
- (13) W. Zhu, W. Chen, H. Yu, Y. Zeng, F. Ming, H. Liang and Z. Wang, *Appl. Catal. B*, 2020, **278**, 119326.
- (14)D. Lim, E. Oh, C. Lim, S. E. Shim and S. H. Baeck, *Catal. Today*, 2020, **352**, 27-33.
- (15) M. Tang, X. Liu, A. Ali, Y. He, P. Shen and Y. Ouyang, J. Colloid Interface Sci., 2023, 636, 501-511.
- (16)B. Wu, Z. Yang, X. Dai, X. Yin, Y. Gan, F. Nie, Z. Ren, Y. Cao, Z. Li and X. Zhang, *Dalton Trans.*, 2021, **50**, 12547-12554.