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1 Modeling the exciton decay kinetics inside nanoparticles

Note: As additional supplementary material, we provide python routines available at this link
[1], which implement the model functions introduced below and their fit to the data disclosed
in the main text.

Solving the rate equation for mono- and bi- molecular decay

The variation of the exciton (S1 electronic state) density
dn(t)
dt due to exciton-exciton annihilation

(EEA), or singlet-singlet annihilation (SSA) is defined as −γ(t)n2(t). SSA produces one electonic
ground state S0, and one higher-lying electronic state Sp (p > 1), thus corresponding to the loss
of two excitons. In general the Sp state is very short lived and ultrafast internal conversion occurs
which converts Sp back to S1, such that one out of 2 excitons is reformed almost instantaneously
resulting in an exciton density growth with rate +1/2γ(t)n2(t). In this case, the exciton density
n(t) evolves - in each nanoparticle - according to:

dn(t)

dt
= −kn(t)− 1

2
γ(t)n2(t), (1)

where k is the (time-independent) fluorescence decay rate of an isolated exciton, and γ(t) the
SSA rate, which is assumed to be time dependent in the general case. Equation 1 is easily
time-integrated by changing variable to v = 1/n, since:

dv

dt
= − 1

n2

dn

dt
=

1

n2
(kn+

γ

2
n2) ⇒ dv

dt
− kv =

γ

2
(2)

The solution of the homogeneous equation dv
dt − kv = 0 is v = C exp(kt). A particular solution

of the inhomogeneous equation can be obtained by the method of variation of parameters, i.e.
by seeking a solution v1(t) = h(t) exp(kt) (h(t) has units of a volume, e.g. cm3):

dv1
dt

− kv1 = γ(t) ⇒ (h′ + kh) exp(kt)− kh exp(kt) =
γ(t)

2

h′(t) exp(kt) =
γ(t)

2
⇒ h(t) =

∫ t

0

γ(u)

2
exp(−ku)du

(h(t = 0) = 0)
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The general solution is thus v = (C + h(t)) exp(kt). With initial condition v(0) = 1/n0, we get:

v = 1/n(t) = (1/n0 + h(t)) exp(kt)

i.e.
exp(−kt)

n(t)
=

1

n0
+ h(t) (used in ref. [2] )

n(t) =
n0 exp(−kt)

1 + n0 h(t)
(3)

The case of time-independent γ

When γ(t) = γ is constant, then we can define a characteristic exciton density nA = 2k/γ
above which the term γn2(t)/2 dominates over kn(t) in Eq. 1. Figure S1 illustrates the decay
kinetics predicted by Eq. 3 for various values of n0 expressed in units of nA: For n0 ≪ nA the
decay kinetics is monoexponential (i.e. no SSA) and does not depend on n0. For n0 > nA the
early-time decay strongly accelerates due to SSA until n(t) reaches values lower than nA.

Figure S1: Exciton decay kinetics as predicted by Eq. 3 with time-independent γ, with n0 values
increasing from nA/10 to 100nA.

With time-independent γ, we get h(t) =
k

nA

∫ t

0
exp(−ku)du =

1

nA
(1− exp(−kt)). Defining

τ = kt, we have:

h(τ) =
1

nA
(1− exp(−τ)). (4)
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The Gösele model for time-dependent γ(t)

Although all our data are nicely fitted with time-independent γ due to the large diffusion constant
(see the main text), for completeness we also mention here the case of time-dependent γ(t),
commonly discussed (see e.g. ref [3]) based on the expression provided by Gösele et al. (see Eq.
24 of ref. [4], where we replace D = DA +DD by 2D since both colliding excitons diffuse with
diffusion constant D, as discussed in the main text):

γ(t) = 8πDRe (1 +Re/(2πDt)1/2),

where D is the exciton diffusion constant and Re is an effective exciton interaction radius.
Introducing again nA = 2k/γ, with γ = 8πDRe, we get:

γ(t) =
2k

nA

(
1 +

√
2nAR3

e√
kt

)
With τ = kt, we then have:

h(τ) =
1

nA

(
1− exp(−τ) +

√
2π nAR3

e erf(
√
τ)
)
, (5)

2 Averaging the decay kinetics over the detection volume

When focusing a laser spot in a solution of ONP’s dispersed in water, the ONP’s located in the
pulse center where the laser intensity is larger have higher initial exciton density and possibly
faster non-exponential decay kinetics if SSA occurs, than the ONP’s located in the pulse periph-
ery where the laser intensity and initial exciton density are lower and the decay kinetics remains
monoexponential. The fluorescence decay kinetics actually observed is therefore the sum of all
these contributions over the entire excitation (or detection, see below) volume.

2.1 Initial exciton density across the excitation volume

Consider a collimated ultrashort light pulse of total energy E0, with transverse energy profile
f(x, y), and propagating along the z axis though an absorbing medium characterized by its
absorption coefficient a, see Fig. S2. The pulse energy profile E(x, y, z) can be written:

E(x, y, z) = E0
S

e−azf(x, y) (6)

with S the characteristic section of the laser pulse defined by
∫
f(x, y)dxdy = S (normalization

convention). The assumption that the transverse beam profile f(x, y) does not depend on z
remains valid at the beam focus, provided that the Rayleigh range is longer than the sample
thickness or light penetration depth.

Note: The Beer-Lambert law is commonly written in terms of the optical density a′ =
a/ ln(10) such that e−az = e− ln(10) a′z = 10−a′z. If the sample is characterized by a uniform
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Figure S2: Propagation along z axis and absorption of a pulse of transverse profile f(x, y),
focused in the sample.

concentration c (in M) of absorbers, then a′/c = ε is the extinction coefficient (in /M/cm) of
the absorbers.

The number dN of photons of energy hν absorbed by an infinitesimal volume dV = dxdydz
centered at r⃗ inside the excitation volume is given by the pulse energy loss dE in that elementary
volume:

E(x, y, z + dz)dxdy − E(x, y, z)dxdy =
∂E
∂z

dV = −hνdN (7)

dN

dV
(x, y, z) = a

E0
S hν

f(x, y) e−az (8)

Within the linear regime of excitation - i.e. low (e.g. few %) excitation probability - each
photon absorbed produces one exciton in the sample. If the medium uniformly absorbs (e.g.
homogeneous film), then the initial exciton density produced by the laser pulse in r⃗ is:

n(r⃗; t = 0) =
dN

dV
(x, y, z) (9)

n(r⃗; t = 0) = n0 f(x, y) e−az (10)

with n0 = a
E0

S hν
, (11)

where n0 is the initial peak exciton density at the sample surface (z = 0) and laser pulse center
(x = y = 0).

Here however, the photons are absorbed by dyes encapsulated in nanoparticules dispersed in a
dilute solution. With ε the extinction coefficient of the dyes in the ONP’s, c = a′/ε = a/(ε ln(10))
is the apparent average dye concentration in the solution, much lower than the actual dye
concentration within ONP’s. The dye excitation probability µ is the ratio between the number
of absorbed photons dN and the number of dyes in the voulme dV : µ = dN/(dV × cNA), with
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NA the Avogadro number:

µ(x, y, z) =
dN

dV
(x, y, z)

ε ln(10)

aNA
(12)

µ(x, y, z) =
ε ln(10)

NA hν

E0
S

f(x, y) e−az (13)

Hence, the initial exciton density created inside ONP’s located in r⃗ is :

n(r⃗; t = 0) = µ(x, y, z)× ρ, (14)

where ρ is the dye number density in the ONP. Therefore we write:

n(r⃗; t = 0) = n0 f(x, y) e−az

with n0 = ρ
ε ln(10)

NA

E0
S hν

(15)

2.2 Detected fluorescence decay kinetics

The fluorescence emission at a location r⃗ within the excitation volume is proportional to the
local exciton population n(r⃗, t), which decays according to Eq. 3, starting from the initial exciton
density n(r⃗; t = 0) given by Eq. 15. Hence the total fluorescence signal measured is proportional
to the integral F (t) of n(r⃗, t) over the entire detection volume V :

F (t) =
1

V

∫
n0 e

−azf(x, y) exp(−kt)

1 + n0 e−azf(x, y)h(t)
dr⃗ (16)

2.3 Integration along z

We define:

F (t) =
1

S

∫
G(x, y, t) dxdy , (17)

with G(x, y, t) =
1

l

∫ l

0

n0 e
−azf(x, y) exp(−kt)

1 + n0 e−azf(x, y)h(t)
dz, (18)

and compute, with α = n0 exp(−kt) f(x, y), and β = n0 h(t) f(x, y):

G(x, y, t) =
1

l

∫ l

0

αe−az

1 + β e−az
dz (19)

= − α

al

∫ e−al

1

du

1 + β u
with u = e−az, du = −audz (20)

=
−α

βal
[ln(1 + βu)]e

−al

1 =
α

βal
ln

(
1 + β

1 + βe−al

)
(21)

G(x, y, t) =
1

al

exp(−kt)

h(t)
ln

(
1 + n0 h(t) f(x, y)

1 + n0 h(t) f(x, y)e−al

)
, (22)

where e−al = 10−A, with A the sample absorbance at the excitation wavelength (al = A ln(10)).

6



Column- or z- averaged exciton density

As we will see below, it is useful to define ñ0 the average of the initial peak exciton density
n(x = y = 0, z; t = 0) along the z axis over the sample thickness:

ñ0 =
1

l

∫ l

0
n(x = y = 0, z; t = 0)dz =

1

l

∫ l

0
n0 e

−azdz (23)

i.e. ñ0 = n0 ×
1− e−al

al
= n0 ×

1− 10−A

A ln(10)
(24)

with A = al/ ln(10), the sample absorbance.

For opaque samples (e−al = 0), ñ0 =
n0

al
=

n0

A ln(10)
.

For weakly absorbing samples, one can define u = al < 1 and write:

ñ0 ≃ n0
1− (1− u+ u2/2)

u
(25)

ñ0 = n0(1− u/2 +O(u2)) (26)

or equivalently n0 = ñ0(1 + u/2 +O(u2)) (27)

Weakly absorbing samples

We now write G(x, y, t) (Eq. 22) as a function of ñ0 rather than n0. With u = al (i.e. u =
A ln(10), with A the sample absorbance), we have:

n0 e
−al = n0 e

−u = n0 − u ñ0

such that
1 + n0 h(t) f(x, y)e

−al

1 + n0 h(t) f(x, y)
=

1 + hf (n0 − u ñ0)

1 + hf n0
= 1− uñ0 hf

1 + n0hf

Hence for u < 1, using Eq. 27, we get:

1 + n0 h(t)f(x, y) e
−al

1 + n0 h(t)f(x, y)
= 1− uhfñ0

1 + hfñ0(1 + u/2 +O(u2))

= 1− αu(1− αu/2 +O(u2)), with α =
hfñ0

1 + hfñ0
< 1

= 1− αu+ α2u2/2 +O(u3),

1

u
ln

(
1 + n0 h(t)f(x, y)

1 + n0 h(t)f(x, y) e−u

)
=

−1

u
(−αu+ α2u2/2− α2u2/2 +O(u3))

= α+O(u2)
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Here it is important to notice in the last equality, that the term linear in u cancels out, such
that

G(x, y, t) =
ñ0f(x, y) exp(−kt)

1 + ñ0f(x, y)h(t)
(28)

is correct up to second order in u = al, and is therefore an excellent approximation
of Eq.18 in the case of weakly absorbing samples (u < 1).

2.4 The flat excitation profile or detection through a pinhole

Assume we excite the sample with a flat-top pulse shape, that is f(x, y) = 1 across the pulse
section S and f(x, y) = 0 outside. Alternatively, we may excite the sample with a non flat laser
pulse, but detect only the fluorescence emitted form the central part of the excitation volume
(where the excitation energy is close to uniform in the transverse direction, i.e. f(x, y) ≃ 1),
by using a pinhole in a confocal fluorescence collection scheme, as illustrated in Figure 2 in the
main text. In both cases, the integration on x, y becomes trivial:

F (t) =
1

al

exp(−kt)

h(t)
ln

(
1 + n0 h(t)

1 + n0 h(t)e−al

)
(29)

F (t) =
ñ0 exp(−kt)

1 + ñ0h(t)
(for al < 1) (30)

Notice that Eq. 30 is nothing but Eq. 3 where we replace n0 by ñ0.

2.5 The Gaussian pulse profile

Assuming a Gaussian pulse energy profile (with f(0, 0) = 1), we define:

f(x, y) = exp

(
− x2

w2
1

− y2

w2
2

)
, with

∫
f(x, y)dxdy = πw1w2 = S (31)

In the expression for the fluorescence signal F (t) =
1

S

∫
G(x, y, t) dxdy , with G(x, y, t) as

given by Eq. 22, we have integrals of the form:

J =
1

S

∫
ln

(
1 + β exp

(
− x2

w2
1

− y2

w2
2

))
dxdy (32)

=
w1w2

S

∫ ∞

0
ln
(
1 + β e−r2

)
2πrdr, with r2 =

x2

w2
1

+
y2

w2
2

(33)

= −
∫ 0

−β
ln (1− u)

du

u
, with u = −β e−r2 , du = −2r udr (34)

= −Li2(−β), (35)
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where, Li2(z) is the dilogarithm function as defined in ref. [5]:

Li2(z) = −
∫ z

0
ln(1− u)

du

u
=

∞∑
n=1

zn

n2
(36)

We conclude, that with a Gaussian laser pulse profile, the detected fluorescence decay kinetics
is given by:

F (t) =
exp(−kt)

h(t) al

(
−Li2(−n0h(t)) + Li2(−n0h(t)e

−al)
)

(37)

Here we note, that assuming an opaque sample, i.e. e−al = 0 , we get the result already
derived by Kirm et al.: [6]

F (t) =
exp(−kt)

h(t)A ln(10)
(−Li2(−n0h(t))) (38)

Weakly absorbing samples

Figure S3: Fluorescence decay kinetics observed upon integration over the entire Gaussian
transverse profile and sample thickness: Comparison between the “exact” expression F1(t) given
by Eq. 37, and the “low-absorption” approximation F2(t) given by Eq. 39. We see, that even
for an absorbance A=0.5, the approximation is correct to ∼ 2% in relative values, whatever the
initial exciton density. The relative error increases to no more than ∼ 8% for A=1, and reduces
to < 0.1% when A < 0.1 as in all experiments reported in the main text.

We now compute the fluorescence signal F (t) =
1

S

∫
G(x, y, t) dxdy , with G(x, y, t) as

given by Eq. 28:
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F (t) =
1

S
exp(−kt)

∫
ñ0 f(x, y)

1 + ñ0 h(t) f(x, y)
dxdy

=
w1w2

S
exp(−kt)

∫ ∞

0

ñ0 e
−r2

1 + ñ0 h(t) e−r2
2πrdr, with r2 =

x2

w2
1

+
y2

w2
2

F (t) = −exp(−kt)

h(t)

∫ 0

ñ0g

du

1 + u
, with u = ñ0h(t) e

−r2 , du = −2r udr

F (t) =
exp(−kt)

h(t)
ln(1 + ñ0h(t)) (39)

In the case γ(t) = γ is time-independent, Figure S3 compares the decay kinetics expected
after integration over the excitation volume according to the exact expression Eq.37 or to the
low-absorption approximation Eq. 39, for a sample absorbance A = 0.5, corresponding to al as
large as al = 0.5× ln(10) ∼ 1.15.

2.6 Finite pinhole size

We now assume that the pinhole is not “small enough” with respect to the Gaussian profile, i.e.
we consider the signal integrated over the gaussian profile, until a maximum radius R defined
by the pinhole radius. We assume that the Gaussian beam is cylindrical : w1 = w2 = w and
we define η2 the ratio between the pinhole section SPH = πR2 and the section SGauss = πw2 of
the image of the excitation volume in the pinhole plane. The effective beam section across the
detection volume is therefore:

Sη =

∫
x2+y2<Rmax

f(x, y)dxdy =

∫ Rmax

0
exp

(
−R2

w2

)
2πRdR, with R2 = x2 + y2 (40)

= w2

∫ η

0
e−r22πrdr, with R/w = r, dR = wdr (41)

= πw2[−e−r2 ]η0 = πw2 (1− e−η2) (42)

In the case of a weakly absorbing sample, we thus write:

Fη(t) =
1

Sη

∫
x2+y2≤R2

G(x, y, t) dxdy , with G(x, y, t) as given by Eq. 28

Fη(t) =
1

Sη
exp(−kt)

∫
x2+y2≤R2

ñ0 f(x, y)

1 + ñ0 h(t) f(x, y)
dxdy

10



Fη(t) =
w2

Sη
exp(−kt)

∫ η

0

ñ0 e
−r2

1 + ñ0 h(t) e−r2
2πrdr, with r2 =

x2 + y2

w2

Fη(t) = − 1

1− e−η2

exp(−kt)

h(t)

∫ ñ0g e−η2

ñ0g

du

1 + u
, with u = ñ0h(t) e

−r2 , du = −2r udr

Fη(t) =
1

1− e−η2

exp(−kt)

h(t)
ln

(
1 + ñ0h(t)

1 + ñ0h(t) e−η2

)
(43)

We note that in the limit where η goes to zero - i.e. the pinhole becomes “small enough” -
we can write e−η2 = 1− η2, such that:

ln

(
1 + ñ0h(t)

1 + ñ0h(t) e−η2

)
= ln

(
1 + ñ0h(t)

1 + ñ0h(t) (1− η2)

)
= ln

 1

1− ñ0h(t)
1+ñ0h(t)

η2

 ≃ ñ0h(t)

1 + ñ0h(t)
η2

lim
η→0

Fη(t) =
ñ0 exp(−kt)

1 + ñ0h(t)
,

which is the expression obtained for a flat excitation profile (see Eq. 30). In all our experiments,
we have η2 ≤ 0.1: the pinhole is small enough that the ‘flat’ approximation is very good.

2.7 Graphical illustrations

Throughout this subsection, we consider the case of a time-independent γ,
i.e. h(τ) = n−1

A (1− exp(−τ)), with τ = kt, and nA = 2k/γ.

Effect of the spatial averaging on the apparent value of γ

Fig. S4 compares the decay kinetics expected according to FPH(τ) and FnoPH(τ) defined as:

FPH(τ) =
ñ0 exp(−τ)

1 + ñ0h(τ)
(44)

FnoPH(τ) =
exp(−τ)

h(τ)
ln(1 + ñ0h(τ)) (45)

Here FPH(τ) is the decay kinetics as given by Eq. 3 and expected to occur with a flat
excitation profile or a small enough pinhole (PH) in a confocal detection scheme. Conversely,
FnoPH(τ) is the decay kinetics as given by Eq. 39 and expected to occur if the fluorescence
emission is averaged over the entire excitation volume, with a Gaussian energy profile (i.e.
without pinhole, hence ‘noPH’ ).

When fitting decay kinetics obeying FnoPH(τ) with FPH(τ) (dashed lines in Figure S4-right),
even if the fit looks good at low initial exciton densities (n(t = 0) ≤ nA), the γ value is
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Figure S4: (See [1]) Comparison between FPH(τ) (left) and FnoPH(τ) (right) for various initial
exciton densities in units of nA. The dashed lines in the right panel are the best fits of each
individual decay curve FnoPH(τ) when using FPH(τ) as the fitting function. No global fit seeking
a γ value common to all curves is possible here. The γ values retrieved for each individual curve
are underestimated by a factor of 2 at least, and further decrease when increasing the initial
exciton density n(t = 0).

underestimated by a factor of at least 2, as can be understood by comparing the initial slopes,
or Taylor expansions, of FPH(τ) and FnoPH(τ) at early times (i.e. τ = kt ≪ 1):

FPH(τ) ≃
τ→0

ñ0(1− τ(1 + ñ0/nA)) (46)

FnoPH(τ) ≃
τ→0

ñ0 (1− τ(1 + ñ0/(2nA))) (47)

The fit becomes worse and worse when increasing the initial exciton density above nA with a
γ value apparently lower and lower, and underestimated by a factor of 2.6 when n(t = 0) = 10nA,
or by a factor of 3.6 when n(t = 0) = 100nA.

Effect of a deviation from the Gaussian profile

Fig. S5 displays the results of the numerical integration of the Eq. 16 over the excitation volume
with various pulse intensity profiles.
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Figure S5: Comparison of the exciton decay kinetics as a function of initial exciton density at
the pulse center (i.e. as a function of the pulse energy), for different pulse transverse profiles.
When neglecting the effect of the integration over the excitation volume, and fitting such decay
kinetics systematically with Eq 3, the apparent γ value becomes lower when deviating further
from the flat energy profile.

3 Time-resolved fluorescence acquisition and data processing

3.1 Experimental conditions

For time-resolved fluorescence data acquisition, the excitation beam is produced at 515 nm by a
frequency-doubled Fiber Chirped Pulse Amplifier (Tangerine, Amplitude system) with a tunable
repetition rate from 1 Hz to 2 MHz. The pulse duration is 300 fs and its spectral width is 2 nm
FWHM. The experimental set-up is depicted in Figure 2 of the main paper. The excitation beam
is propagated through a telescope (f=150mm, followed by f=200 mm) to adjust its diameter to
1.3 mm FWHM. It is then reflected by a dichroic filter (DF: Semrock Di02-R532-25x36) and
focused in the circulated sample solution using a 10× microscope objective (Mo: Mitutoyo Plan
Apo 10X, f=20 mm, NA=0.28, pupill diameter = 11.2 mm). The emitted fluorescence is collected
through the same objective and is transmitted by the dichroic filter. A confocal detection scheme
is implemented by placing a pinhole (PH) at the focal distance from two identical achromatic
doublets (f=100mm, Thorlabs). The PH allows the selection of the fluorescence signal emitted
from the central region of the excitation volume over which the excitation intensity is nearly
spatially homogeneous. The spatially filtered and collimated fluorescence is propagated through
a long pass filter (Thorlabs FGL530) to further attenuate residual excitation light, and focused
by a camera objective (CO, Senko VFA5095H f=50 mm) into a spectrograph equipped with
a streak camera (Hamamatsu streak scope C10627) operated in single photon counting mode.
Thus, the measured fluorescence signal is spectrally and temporally resolved with 10ps time
resolution.

A polarizer (P: Melles Griot Glan-Thompson prism) and an analyzer (A: Thorlabs WP25M-
VIS) are used to set at magic angle (54.7°) the relative angle between the excitation and detection
linear polarizations, thus cancelling the effects of fluorescence depolarization on the detected
fluorescence intensity decay. The excitation power values were tuned utilizing a linear variable
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neutral density. For higher excitation energies, the average power of the excitation beam was
maintained low by down-scaling the laser pulse repetition rate. By doing so, we prevent the
photodegradation of the sample eventually occurring after long experimental runs.

3.2 Measuring the laser spot section at the sample location

The excitation spot intensity profile is characterized by imaging the fluorescence spot - in the
absence of the pinhole - using an auxiliary CCD camera imaging the plane of the sample. This
must be done with very low excitation power, i.e. in the absence of SSA, in order to avoid
saturation of the fluorescence intensity (hence broadening of the apparent fluorescence spot size).
Indeed, only when the fluorescence intensity remains proportional to the excitation energy does
the observed fluorescence intensity distribution precisely report on the excitation beam intensity
distribution.

We carefully calibrated δS = δ2x the effective transverse surface element of the sample repre-
sented by each pixel. The calibration was done by imaging a reference, graduated target placed
in the focal plane of the microscope objective (see Figure 2 in the main text), with no pinhole
between both achromatic doublets. Then, for this calibration to be reliable, we have to make
sure that the sample (the water solution inside a flow cell of thickness 0.2 to 0.5 mm) is placed in
the same plane. To do so, we mounted the cuvette holder on a manual translation stage and no-
ticed that we could precisely detect the positions where the successive glass/air and glass/water
interfaces of the flow cell are in the objective focal plane, by imaging the pump beam reflections
on these interfaces. Finally, we move the translation stage to the middle position between both
water/glass interfaces.

Fig. S6 shows an example of images recorded with the auxiliary CCD camera. In the ab-
sence of pinhole, the transverse profile of the excitation volume is relatively well fitted by a
2-dimensional Gaussian function.

We define P (i, j) the digitized signal on each pixel of the camera. We assume that P (i, j) is
proportional to the sum along the z axis of the number n(x = iδx, y = jδx, z)δSdz of photons
emitted from each elementary volume δSdz. More precisely, we write (with C a constant of
proportionality):

P (i, j) δS = C

∫ l

0
n(x = iδx, y = jδx, z)dz δS

P (i, j) = C l ñ(x = iδx, y = jδx)

P (i, j) = C l ñ0 f(x = iδx, y = jδx) (from Eq. 15 and Eq. 24)

⇒ max(P (i, j)) = C l ñ0max(f(x = iδx, y = jδx)) = C l ñ0 f(0, 0) = C l ñ0

We therefore can write:

P (i, j)

max(P (i, j))
= p(i, j) = f(x = iδx, y = jδx) (48)

⇒ S =
∑

p(i, j)δS (49)

14



Figure S6: Image of the sample plane in the absence (A) and presence (B) of the pinhole of
diameter 50 µm in the conjugated, pinhole plane. In the absence of pinhole (A), the excitation
transverse profile is well fitted by a 2-dimensional Gaussian functions as illustrated by the profiles
along j (raws, panel C) and i (lines, panel D).

Hence we analyze the fluorescence spot images P (i, j) as indicated by Eq. 48 and Eq. 49 in
order to determine the laser spot section S in micrometers. This quantity is essential for a
careful calibration of the fluorescence intensity in terms of exciton density as we will discuss in
section 3.5 below. As an example, we find S=298 pixels for Figure S6A. The analysis of the
CCD image of the 50 µm pinhole reveals a section SPH=16.8 effective pixels, corresponding to a
ratio η2 = SPH/SGauss ≃ 1/18 (see subsection 2.6). In all experiments reported here, we use a 25
µm pinhole, while typical spot sections are in the range of 300 µm2 to 1500 µm2 on the sample
(i.e. ∼ 60 to 300 pixels in the CCD image of the pinhole plane), corresponding to a Rayleigh
length L = S/λ of 0.6 mm or more (λ = 0.515 µm). This is longer than the sample thickness of
0.2 or 0.5 mm, defined by the two types of flow cells used in the various experiments.
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3.3 Testing the linear regime of rhodamine dye excitation

Figure S7: Fluorescence intensity (a.u.) of a water solution of rhodamin B at concentration 3
mM as a function of excitation intensity, detected in the confocal configuration in the presence
of the pinhole. The individual chromophore absorption starts deviating from the linear regime
at excitation intensity exceeding 1mJ/cm2, never reached in the TR fluorescence experiments
with the SC, nor in the transient absorption experiments (see below).

3.4 Data acquisition and processing

The spectrally and temporally resolved fluorescence signal is successively recorded over two
(or three) streaking time windows of 1 ns, 5 ns (and/or 20 ns). The temporal response func-
tion of the streak camera is a Gaussian of ≈ 10ps standard deviation for 1 ns time window.
For each time window, the measured signal is baseline corrected and spectrally integrated over
the full fluorescence emission spectral range. Thereafter, for each given excitation power, a
complete fluorescence decay kinetics is reconstructed by appending the individual decays cor-
responding to each detection time window. Figure S8-A illustrates the full fluorescence signal
decay over 20 ns for 30w% dye-loaded ONPs reconstructed by scaling the relative amplitudes of
the spectrally-integrated curves recorded over the three streaking time windows. We note that
global analysis/fitting models were performed on the exciton population kinetics obtained from
such reconstructed fluorescence decay kinetics. This approach has two advantages. First and
foremost, it allows resolving the decay at early times with the best permissible resolution in the
1 ns time window. Secondly, owing to the single-photon counting operation, the fluorescence
tail can be detected with a high signal-to-noise ratio in the 20 ns time window.
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Figure S8: (A) Reconstruction of the fluorescence decay kinetics measured for 30w % dye-
loaded ONP utilizing the streak camera setup. The inset highlights the decay up to 1ns. The
fluorescence intensities are measured over 1 ns, 5 ns and 20 ns streaking time windows. A scaling
factor is computed to ensure optimal overlapping. (B) Zoom on the early times of Figure 3B of
the main text, together with the streak camera response function (green) on the 1 ns streaking
time window, recorded by monitoring a reflection of the 300-fs excitation pulse.

The fluorescence decay kinetics (measured on three time windows and reconstructed as ex-
plained above) are recorded with a given excitation laser power P in µW and repetition rate r in
kHz. We also calibrate that, at the location of the sample the laser power is f = 0.86 times the
power that we measure at a different, more accessible location along the excitation laser beam
path. The sample is thus excited with and energy per pulse:

E0 =
f × P

r
, in nJ. (50)

We excite the samples with minimum laser repetition rate to avoid sample photodegradation.
We therefore record the fluorescence signal with no attenuation filter in front of the spectrograph
entrance slit, and a fixed widely opened slit. We operate the streak camera in photon counting
mode, with the SC-CCD exposure time fixed at 100 ms, and 2 to 4% photon detection probability
per pixel at maximum. One acquisition consists of accumulating a fixed number of 2500 SC-
CCD frames, taking a bit more that 250 s (the SC-CCD readout rate is close to 10 frames
per second). When reducing the energy per excitation pulse in order to test the linear regime
of excitation (i.e. no SSA) we operate at maximum repetition rate r = 200 kHz, and may
even increase the SC-CCD exposure time Tx to a value longer than the usual 100ms in order to
maintain the photon detection probability per SC-CCD frame in the same range. Conversely,
when increasing the energy per pulse to observe large SSA rates, we reduce the repetition rate r

17



(down to 100 Hz at minimum), so as to maintain a comparable average light power and therefore
a comparable photon counting rate. Eventually, to account for these variations in acquisition
conditions, we rescale the raw streak camera signals s(t) to produce fluorescence decay curves
s̃(t) that can be quantitatively compared to one another, according to:

s̃(t) =
s(t)

r × Tx
(51)

3.5 Signal absolute calibration in units of exciton density in the ONP’s.

The signal s̃(t) is directly proportional to the total fluorescence signal F (t) emitted in the
detection volume, as defined by Eq. 16. More precisely, provided the signal amplitude is not
limited by the experimental time resolution, i.e. at excitation powers where SSA does not lead
to an ultrafast exciton decay, the maximum of the signal s̃(t) is proportional to F (t = 0) = ñ0

according to Eq. 46 or Eq. 47.
From the measurement of the excitation beam energy E0 ( Eq. 50) and section S at the

sample location (see subsection 3.2), we infer the R18 dye excitation probability µ(r⃗ = 0⃗) at the
laser pulse center and at the entrance of the sample (see Eq 13):

µ(x = y = z = 0) =
ε ln(10)

NA hν

E0
S
, (52)

where ε = 35000 /M/cm = 4.7 × 107 cm2/mol is the extinction coefficient of R18 in the ONP
at the excitation wavelength of 515 nm, and hν = 3.86 × 10−19 J is the excitation photon
energy. Hence we get:

ε ln(10)

NA hν
= 0.347 cm2/mJ.

In other words, with a pulse energy density
E0
S

= 0.1 mJ/cm2, the dye excitation probability is

3.47% at the laser pulse center and at the entrance of the sample.
Then, knowing the dye number density ρ in the ONPs, and the sample absorbance A in the

flow cell (flow cell thickness = 0.2 or 0.5 mm depending on the flow cell used in each experiment),
we infer the z-averaged peak exciton density ñ0, according to:

ñ0 = ρ× ε ln(10)

NA hν

E0
S

× 1− 10−A

A ln(10)
, (53)

Fig. S9 illustrates how Eq. 53 is used to calibrate the measured decay kinetics in units of
exciton density. The absolute calibration relies on the knowledge of the dye number density ρ
in the ONP’s, which is evaluated as follows. By definition, we can write:

ρ =
mdye

Mdye × VONP
×NA,

where:
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Figure S9: Example of calibration of decay kinetic signals (in arbitrary units) in units of exciton
density (in nm−3) for 30 wt%-loaded nanoparticles. Blue stars represent the maximum signal
s̃(t = 0) (in arbitrary units) recorded as a function of the excitation energy density. Eq. 53 is
used to convert the excitation pulse energy density (in mJ/cm2) into peak exciton density (in
nm−3). The slope of the orange line (in nm3), defines the calibration factor to rescale the signal
s̃(t) in exciton density.

• mdye = δ ×mpoly is the total mass of dyes (ions + counterions) expressed as a function of
the total mass of polymer mpoly and δ the dye loading in w% of polymer,

• Mdye = 1375.11 g/mol is the molar mass of dyes (ions + counterions),

• VONP is the total volume of all ONP’s in solution expressed as a function of the average
polymer (and dye) density d=1g/cm3:

VONP =
mpoly +mdye

d
= (1 + δ)

mpoly

d
.

Hence:

ρ =
δ

1 + δ
× dNA

Mdye
=

δ

1 + δ
× 4.38× 1020 cm−3 (54)

ρ =
δ

1 + δ
× 0.438 nm−3 (55)

We have been investigating ONPs with dye loading δ = 30% or 100%, corresponding to dye
number densities as large as ρ = 0.10 or 0.22 dye per nm3.
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4 Complementary time-resolved fluorescence data

Figure S10: (See [1]) ONP30, batch B: Exciton density (in nm−3) decay kinetics averaged over
the detection volume without any pinhole (black lines), for increasing excitation powers. The
red lines are the result of the global fit of the decay kinetics with KnoPH(t) yielding γ =5600
nm3/ns (left), or with KPH(t) yielding γ =1800 nm3/ns (right). In the right panels, the model
is not good at fitting the asymptotes which do not merge when increasing power. What is
more, the resulting γ value is underestimated by a factor of 3. The individual fit of each decay
kinetics with KPH(t) appears good (not shown) but erroneously results in a γ value reducing
with increasing excitation power. Only when using the appropriate fitting function KnoPH(t)
(left panels) do we obtain a satisfying global fit, with a unique γ value.
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Figure S11: ONP100, batch A: Exciton density (in nm−3) decay kinetics averaged over the
detection volume without any pinhole (left) and with pinhole (right), for increasing excitation
powers.The red lines are the result of the global fit of the decay kinetics with KnoPH(t) yielding
γ =8100 nm3/ns (left), or with KPH(t) yielding γ =5900 nm3/ns (right). Both panels display
the results of distinct experimental campaigns, performed in different conditions (with or with-
out pinhole) and fitted with the appropriate functions: the difference between both γ values,
i.e. ± 1100 nm3/ns, should be assigned here to the typical uncertainty characterizing the overall
repeatability of the measurements.

5 Modeling the light-induced formation of a quencher species

Here we compare two models, ‘Q2’ and ‘Q1’, where the quencher photoproduction would occur
from the doubly-excited Sp state produced by SSA, or directly from the singly-excited S1 state
produced by light absorption, respectively:

• Model ‘Q2’ (used in the main text):

dn(t)

dt
= −(k + γQnQ(t))n(t)− (1 + β)

γ(t)

2
n2(t) + n0P (t)

dnQ(t)

dt
=

β

2
γ(t)n2(t)

(56)

• Model ‘Q1’:

dn(t)

dt
= −(k + kQ + γQnQ(t))n(t)−

γ(t)

2
n2(t) + n0P (t)

dnQ(t)

dt
= kQ n(t)

(57)
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Figure S12: (See [1]) ONP100, batch B: Exciton density (in nm−3) decay kinetics detected
with a pinhole (black lines), for increasing excitation powers. These are the same data as in
Figure 4C in the main text. The red lines are the result of the global fit with model ‘Q2’ (left)
or ‘Q1’ (right). While model ‘Q2’ reproduces the sudden decrease of the exciton lifetime when
ñ0 exceeds 10

−3 /nm3 (left), model ‘Q1’ predicts a more gradual variation of the exciton lifetime
as a function of excitation power, which does not fit so well the observation (right). Note that
the sudden increase in the residuals at t ≃ 0.7ns (bottom panels) is due to the sudden reduction
of the noise amplitude (used to weight the residuals) for data recorded on longer time windows
(see the streak camera data appending procedure illustrated in Figure S8-A).

6 Förster radius R0 for homo-FRET

Incoherent exciton hopping from dye to dye is described as a resonant energy transfer from an
R18 dye in its excited state (S1, the donor D) to a nearby R18 dye in its ground state (S0, the
acceptor A). This process is sometimes called homo-FRET. The corresponding Förster radius
R0 - i.e. the distance at which the energy transfer quantum yield is 50% - is given by: [7]

R0 = 0.2108

[
κ2ϕDn

−4

∫ ∞

0
ID(λ)εA(λ)λ

4 dλ

]1/6
, (58)

with κ2 the orientational factor, ϕD the donor fluorescence quantum yield in the absence of any
energy acceptor, and n is the refractive index of the medium. The integral expresses the spectral
overlap between the donor’s fluorescence spectrum ID(λ) normalized such as

∫∞
0 ID(λ) dλ = 1,

and the acceptor’s absorption εA(λ) in units of M−1 cm−1. In the present case of homo-FRET,
εA(λ) = εD(λ) is the R18 dye extinction coefficient.
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We compute the spectral overlap from the steady state fluorescence and absorption spectra
presented in Figure 3A of the main text, after scaling the absorption spectrum according to
εD(λ = λmax) = 125000 M−1 cm−1.[8] In the absence of homo-FRET and any quenching species,
the fluorescence quantum yield is ϕD = 0.99, measured on ONPs with a low dye-loading of
0.1w%. [9] The PMMA refractive index is n = 1.49.[10] Since the dyes are randomly distributed
within the rigid polymer solution in the ONPs, the orientational factor is κ2 = 0.476.[7]

Applying these parameters to Eq.58, we find R0 = 5.27 nm and R0 = 5.21 nm for 30 wt%
and 100 wt% dye-loaded ONPs, respectively.

7 Transient absorption spectroscopy and Förster radius for EEA

A chirped-pulse, Ti:Sa, regenerative amplifier (Amplitude) is used to pump a commercial optical
parametric amplifier (TOPAS, Light Conversion) with an 800nm, 40-fs pulse at 5 kHz repetition
rate. The TOPAS is tuned and its output pulse frequency-doubled so as to produce a ≃ 60 fs
pump pulse at 515 nm. A white light supercontinuum is generated by focusing about 2 µW
of the fundamental 800-nm pulse in a CaF2 crystal and used as the probe pulse. The pump
and probe are focused to ≃ 70µm and ∼ 35µm, respectively, and overlapped. A water solution
of 30 %w dye-loaded ONPs is circulated in a 0.5 mm thick fused silica cuvette placed at the
location of the pump and probe spatial overlap. The sample absorbance is ≃ 0.04 at the pump
wavelength. Pump and probe are linearly polarized with magic angle (54°) relative orientation.

While the SC and its single photon counting capability enables recording fluorescence decay
kinetics with extremely low excitation powers, higher excitation probabilities are required to
detect a decent signal in the TAS set-up with the ONP samples. Three pump-probe experiments
were carried out with three different pump pulse energies of 5 nJ, 10 nJ and 24 nJ, corresponding
to rhodamine dye excitation probabilities of approximately 3.1, 6.2 and 14 %, respectively. At
these excitation probabilities, the exciton decay kinetics is dominated by SSA.

We perform a multiexponential, global fit of the TAS data: three resolved time constants (i.e.
larger than the TA time resolution of 60 to 70 fs) are sufficient to minimize the reduced χ2 in these
fits. The corresponding Decay-Associated Spectra (DAS) are displayed in Figure S13. While the
time constants extracted from these multiexponential fits have no immediate physical meaning
(indeed the expected decay kinetics is not multiexponential but obeys Eq. 30), the DAS reveal
the time evolution of the spectroscopic signature of the excitons in the ONP’s. The shortest of
these time constants is in the range of 0.7 to 1.2 ps depending on the excitation probabilities.
The corresponding DAS reveal spectral relaxation associated to vibrational relaxation in S1, as
also observed in rhodamine B in water solution (not shown) on a very similar time scale. Exciton
population decay and GSB recovery may also occur already on the ps time scale, especially in
the 24-nJ-pump data. Noticeably, the DAS corresponding to intermediate time scales of 20 to
60 ps are identical in all three experiments and reproducibly different (the negative band is
narrower - likely the signature of vibrationally hot S1 or S0 states) from the DAS characterizing
the longest time constants in the range 300 to 700 ps. The latter are also identical in all three
experiments and we compute their average, that we name DASlong in the following.
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Figure S13: Result of the global analysis of the TA data recorded on ONP30 with pump pulse
energies of of 5 nJ, 10 nJ and 24 nJ: The Decay-Associated Spectra (DAS) corresponding to (left)
the fast, (middle) intermediate and (right) slowest time constants are normalized and compared
among the three experiments.

The transient absorption signal revealed by DASlong is the superposition of three contribu-
tions which are ground state bleach (GSB), stimulated emission (SE) and excited state absorp-
tion (ESA). Subtracting the GSB and SE contributions allows us to retrieve the ESA spectrum
from this DASlong. While the GSB is directly proportional to the opposite of the absorption
spectrum εGS(λ), the (negative) extinction coefficient for stimulated emission εSE(λ) can be in-
ferred from the fluorescence spectrum A(λ). Indeed, following the reasoning by Strickler & Berg
[11] (see also ref. [12]) we shall first note that the Einstein relation between spontaneous and
stimulated emission allows us to write: εSE(ν) ∝ A(ν)×ν2 where the spectra are expressed as a
function of the photon frequency ν. When writing the spectra as a function of wavelength, this
relation becomes εSE(λ) ∝ A(λ)λ4 (See e.g. ref. [7] about the conversion from wavelength to
frequency axis for emission spectra). Then, the intensities of stimulated emission and absorption
spectra are related to one another because both extinction coefficients describe light-molecule
interaction involving the same transition dipole moment, such that (see [11]) :∫

εSE(λ)

λ
dλ = −

∫
εGS(λ)

λ
dλ.

Eventually we compute the SE extinction coefficient (in units of /M/cm) as follows:

εSE(λ) = −
∫ εGS(λ)

λ dλ∫
A(λ)λ3dλ

A(λ)λ4 (59)

Figure S14-A illustrates the spectral shape expected for the sum of GSB and SE, as inferred
from the ground state absorption and the fluorescence spectrum (Eq. 59). This contribution must
be subtracted to DASlong in order to recover the ESA extinction coefficient εESA(λ). Figure S14-
B and S14-C present two different, plausible “scalings” of the SE + GSB contribution in order to
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Figure S14: (A) Construction of the expected GSB and SE spectral shapes from the steady-state
absorption and emission spectra (see Eq. 59), respectively. The red line is the opposite of the
sum GSB+SE. (B) and (C) Evaluation of the ESA extinction coefficient (orange lines) computed
as the difference between the scaled DASlong and the expected GSB+SE contribution, with two
plausible “scalings” (i) and (ii) of the GSB+SE contribution. The overlap between the retrieved
ESA spectra and the emission spectrum (blue line) defines the Förster radius REEA for energy
transfer between two chromophores in their excited states.

evaluate the error bar on the retrieved ESA intensity. In the end, we are interested in computing
the overlap of this ESA spectrum with the exciton emission spectrum. Using both evaluations of
the ESA spectrum we infer the ratio between REEA the Förster radius characterizing the energy
transfer between two chromophores in their excited states hence EEA: REEA = (1.10±0.05)×R0,
with R0 characterizing the homo-FRET responsible for exciton hoping.

8 Pulsed versus cw illumination

By definition of the absorption cross section σ (in cm2), and within the linear regime of excitation
(i.e. σ independent from the excitation light intensity), the rate kabs(t) of photon absorption by
the population of dyes in their ground state nGS(t), is given by

kabs(t) = σI(t)/(hν), (60)

where I(t) is the (time-dependent) incident light intensity, hν the photon energy - hence I(t)/(hν)
is the incident photon flux. We note here, that σ is conceptually the same physical quantity as
the extinction coefficient ε but written in different units: σ = ε ln 10/NA.[7]

In the following, we will assume a low enough excitation probability, such that the dye
ground state population ρ (see Equation 55 for the evaluation of ρ) is weakly depleted and can
be assumed to remain constant. In a CW experiment, this is practically always a very good
approximation. In a pulsed experiment, this means, that we remain in the linear regime of
excitation, i.e. with an energy density typically lower than 1 mJ/cm2, according to Figure S7.
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We now rewrite Equation 1 in a more general form including the source term accounting for
the rise of the exciton population n(t) upon light absorption by the ground state population ρ
with rate kabs(t) :

dn(t)

dt
= +kabs(t)ρ− kn(t)− 1

2
γ(t)n2(t), (61)

Pulsed excitation. Provided the pulse duration is much faster than the excited state pop-
ulation kinetics, we can model a pulsed experiment without the source term (i.e. Equation 1),
but define the initial condition:

n(t = 0) =

∫ +ϵ

−ϵ
kabs(t)ρdt = ρ

σ

hν

∫ +ϵ

−ϵ
I(t)dt = ρ

σ

hν

E0
S

where ϵ is a time interval short compared to the excited state dynamics, and long compared to
the pulse duration, E0/S is the pulse energy density in J/cm2. We may thus define the excitation
probability per pulse as being:

η =
n(t = 0)

ρ
=

σ

hν

E0
S

=
ε ln(10)

NA hν

E0
S
, (62)

which is the expression already given in Equation 15.
We observe (see main text) that EEA becomes significant with excitation probabilities ap-

proaching ηA = 0.1%, which is thus achieved for pulse energy densities as low as:

EA/S = ηA
hν

σ

With an excitation wavelength of 515nm - i.e. hν = 3.86 × 10−19 J - the extinction coefficient
of R18 in ONPs is ε = 35000 /M/cm, such that σ = 1.34 × 10−16 cm2. Hence EEA becomes
significant when the pulse energy density approaches EA/S = 2.9 µJ/cm2. In the present time-
resolved photoluminescence experiment, we use a 300 fs pulse such that the corresponding pulse
peak intensity is as large as ≃ 107 W/cm2. This is a huge peak intensity, but the pulse duration
is so short that it indeed corresponds to a low (0.1%) excitation probability per pulse.

Continuous wave (cw) excitation. With cw light, i.e. time-independent kabs, the exciton
population in the stationary regime ncw is given by:

dn

dt
= 0 = ρkabs −

ncw

⟨τ⟩
− 1

2
γn2

cw (63)

0 = −nAρ⟨τ⟩kabs + nAncw + n2
cw (64)

i.e. ncw =
nA

2
(
√
1 + 4⟨τ⟩kabsρ/nA − 1) (65)

Here for simplicity, we introduce the average lifetime ⟨τ⟩, rather than considering a distribution
of lifetimes (see Table 1 in the main text), and accordingly, we define nA = 2/(γ⟨τ⟩), assuming
that γ(t) = γ is constant.
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Excitons decay either “naturally” with rate 1/⟨τ⟩ or via EEA with rate γncw/2. Hence the
fluorescence quantum yield ϕ is given by:

ϕ =
krad

1/⟨τ⟩+ γncw/2
= krad⟨τ⟩

1

1 + ncw/nA
(66)

ϕ = ϕ0
1

1 + ncw/nA
, (67)

where ϕ0 = krad⟨τ⟩ is the fluorescence quantum yield at low excitation intensity (i.e. no EEA).
For instance ϕ0 = 0.44 for ONP30, see Table 1 in the main text.

The EEA decay mechanism becomes significant - i.e. reduces notably the fluorescence quan-
tum yield - when nw approaches nA. This corresponds to absorption rates approaching kAabs
given by:

4⟨τ⟩kAabsρ/nA = 8

i.e. kAabs =
2nA

ρ⟨τ⟩
=

4

ργ⟨τ⟩2

According to Equation 60, the corresponding cw light intensity would be:

IA = kAabs
hν

σ
=

4

ργ⟨τ⟩2
hν

σ
= 3.7 kW/cm2,

where we take ⟨τ⟩ = 2.35 ns as in the case of ONP30.

By contrast, no more than few W/cm2 cw light intensity is used for single ONP fluorescence
detection. In this regime, ncw ≪ nA and we can even write 4⟨τ⟩kAabsρ/nA ≪ 1 to Taylor expand
Equation 65, such that:

ncw = ρkabs⟨τ⟩

With 1 W/cm2 cw light intensity at 532 nm [13] - where ε = 47000 /M/cm, i.e. σ =
1.8× 10−16 cm2 - the photon absorption rate of the R18 dye is kabs ≃ 500 s−1, corresponding to
an average excitation probability of ncw/ρ = kabs⟨τ⟩ of order 10−6. With ρV ≃ 4000 dyes per
ONP, each ONP absorbs ∼ 2× 106 photons per second, but the average number of exciton per
ONP in the photostationary state remains of order ncw × V = 4000× kabs⟨τ⟩ ≃ 0.005.

Assuming Poisson statistics with average value 0.005, the probability to find 2 excitons in an
ONP is ≃ 0.0052/2 ≃ 12× 10−6. In the same way as we wrote the probability ϕ that an exciton
decays radiatively (Equation 67), we can write the probability pEEA that an exciton decays via
EEA - provided there are (at least) 2 excitons in the ONP, i.e. n ≥ 2/V :

pEEA =
γn/2

1/⟨τ⟩+ γn/2
=

n/nA

1 + n/nA
(68)

with n =
2

V
⇒ pEEA =

2

2 + V nA
≃ 1

3
since V nA ≃ 4 (see main text) (69)
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We conclude that with kabs ≃ 500 s−1, the probability for EEA to occur in a 30 wt%-loaded
ONP is of order 4 × 10−6. With 2 × 106 photons absorbed per second, we typically expect
≃ 10 EEA events per second per ONP, i.e. the photoproduction of 1 quencher state (i.e. EEA
byproduct Q, see main text) per ONP every 5 seconds. For the 100 wt% loaded ONPs, the
R18 dye density is 2.2 times larger, while V nA = 2V/(γ⟨τ⟩) is essentially identical. This means
that the rate of EEA events is about 2.22 = 5 times larger in ONP100 than in ONP30, under
identical cw light intensity.
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