Catalytic synergy of WS₂ anchored PdSe₂ for highly sensitive hydrogen gas sensor

Suresh Kumar^a, Ashok Kumar^b, Amit Kumar^b, Atul G. Chakkar^c, Atanu Betal^a, Pradeep Kumar^c, Satyajit Sahu^{a,*}, Mahesh Kumar^{b, d*}

^aDepartment of Physics, Indian Institute of Technology Jodhpur, Jodhpur 342030, India ^bDepartment of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, India ^cSchool of Physical Sciences, Indian Institute of Technology Mandi, Mandi 175005, India

^dDepartment of Cybernetics, Nanotechnology and Data Processing, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland

*Corresponding authors: Mahesh Kumar: <u>mkumar@iitj.ac.in</u>,Satyajit Sahu: <u>satyajit@iitj.ac.in</u>

Fig. S1 AFM images (a) pristine $PdSe_2$ and (b) WS_2 decorated $PdSe_2$ thin film

Fig. S2 FE-SEM images (a) pristine PdSe₂ and (b) cross-sectional image of pristine PdSe₂

Fig. S3 XPS core level spectra of (a) W $4f_{7/2}$ and W $4f_{5/2}$ (d) S $2p_{3/2}$ and S $2p_{1/2}$ of pristine WS₂ and WS₂ anchored PdSe₂, respectively.

Fig. S4 (a) selectivity of pristine $PdSe_2$ towards various gases (b) repeatability of $PdSe_2/WS_2$ heterostructure.

Fig. S5 (a) Resistance of the 15 μ l WS₂ anchored PdSe₂ sensor at 100 °C from 0.5 to 50 ppm H₂ gas. (b) Resistance of the PdSe₂/WS₂ heterostructure under different RH condition of 20%, 40%, 60% and 80% to 50 ppm H₂ at 100 °C.