Supporting Information

Multifunctional Tunable Cu_2O and $CuInS_2$ QDs on TiO_2 Nanotubes for

Efficient Chemical Oxidation of Cholesterol and ibuprofen

Nilem Khaliq^{1,2,5}, Ghafar Ali³*, Muhammad Asim Rasheed¹*, Maaz Khan³, Yi Xie⁴, Patrik Schmuki⁵**, Sung Oh Cho⁶, Shafqat Karim³

¹Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan

²Department of Physics, Women University Swabi, Swabi, Khyber Pakhtunkhwa. Pakistan

³Nanomaterials Research Group (NRG), Physics Division, PINSTECH, Islamabad 44000, Pakistan

⁴State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, No. 122, Luoshi Road, Wuhan 430070, China

⁵Department of Materials Science and Engineering, University of Erlangen-Nuremberg,

Martensstrasse 7, D-91058 Erlangen, Germany

⁶Department of Nuclear and Quantum Engineering (NQe), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea

E-mail: * ghafarali@kaist.ac.kr, masimr22@gmail.com

**schmuki@ww.uni-erlangen.de

Figure S1. Different stages of fabrication of non-enzymatic biosensor

Figure S2: FE-SEM images showing the cross-sectional view of $CuInS_2/Cu_2O/TNTs$ electrode for different decoration cycle of $CuInS_2QDs$ for (a) 2 cycles, (b) 4 cycles, (c) 6 cycles, and (d) 8 cycles. The inset (a-d) shows their corresponding QDs size distribution.

Figure S3. FE-SEM images showing the cross-sectional view of $Cu_2O/TNTs$ electrode decorated with Cu_2O QDs for (a) 5 cycles, (b) 10 cycles, (c) 20 cycles, (d) 30 cycles, and (e) 40 cycles. The inset (a-e) shows their corresponding QDs size distribution.

Scheme S1: Variation of bandgaps of Cu₂O QDS with particle size.

Scheme S2: Variation of bandgaps of CuInS₂ QDS with particle size.

Figure S4. EDX elemental mapping of $CuInS_2/Cu_2O/TNTs$ for (a) oxygen (O), (b) titanium (Ti), (c) copper (Cu), (d) indium (In), and (e) sulfur (S). (f) The corresponding EDX elemental spectra with atomic weight percent (%).

Figure S5: Comparison of high resolution XPS spectra of Cu2p for (a) $Cu_2O/TNTs$, (b) $CuInS_2/TNTs$ and (c) $CuInS_2/Cu_2O/TNTs$ electrodes.

Figure S6: Fitted curves of EIS spectra and values of circuit parameters of (a) TNTs, (b) $Cu_2O/TNTs$, (c) $CuInS_2/TNTs$, (d) $CuInS_2$ (4)/ $Cu_2O/TNTs$, (e) $CuInS_2(6)/Cu_2O/TNTs$, (f) $CuInS_2(8)/Cu_2O/TNTs$.

Figure S7: Fitting of the linear portion of the Mott-Schottky curves of (a) TNTs, (b) $Cu_2O/TNTs$, and (c) $CuInS_2/Cu_2O/TNTs$.

Figure S8: CV of (a) $Cu_2O/TNTs$ electrode for different deposition cycles of Cu_2O QDs on TNTs, and (b) $CuInS_2/Cu_2O/TNTs$ electrode for varying loading density of $CuInS_2$ QDs (by keeping the Cu_2O QDs deposition fixed to 10 cycles).

Figure S9: Cyclic voltammetry response studies of pristine TNTs as a function of cholesterol concentration.

Figure S10. Linear fitting of the calibration curve of TNTs, $Cu_2O/TNTs$, and $CuInS_2/TNTs$ electrode derived from their corresponding amperometric response for cholesterol detection.

Figure S11. (a) Effect of pH, and (b) temperature of the electrolyte on current response of the CuInS₂/Cu₂O/TNTs electrode for cholesterol detection, (c) Calibration plot showing the reproducibility of CuInS₂/Cu₂O/TNTs electrode towards 0.25mM cholesterol for six individual samples (Sample1-Sample6). Inset shows the corresponding amperometric response, (d) CV of a single sample for 10 successive measurements.

Figure S12: Linear fitting of the calibration curve of (a) TNTs, (b) $Cu_2O/TNTs$, and (c) $CuInS_2/TNTs$ derived from their corresponding amperometric response for ibuprofen detection.

Figure S13: (a) Effect of pH, and (b) temperature of the electrolyte on the current response of $CuInS_2/Cu_2O/TNTs$ for ibuprofen detection. Calibration plot showing the (c) reproducibility and (d) repeatability of $CuInS_2/Cu_2O/TNTs$ towards 99.4 μ M ibuprofen.

Figure S14: FE-SEM cross sectional images of used (a) $Cu_2O/TNTs$, (b) $CuInS_2/TNTs$, (c) $CuInS_2$ (4)/ $Cu_2O/TNTs$, (d) $CuInS_2(6)/Cu_2O/TNTs$, and (e) $CuInS_2(8)/Cu_2O/TNTs$. (f) Comparison between the XRD pattern of fresh and used $CuInS_2/Cu_2O/TNTs$ samples.