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Figure S1 XRD pattern of Ag2O on SiO2/Si substrate.
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Figure S2 Contact angle test between (a) AgBiS2 solution and SiO2 substrate and (b) AgBiS2 
solution and Ag2O.
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Figure S3 Optical microscope picture of the original mask pattern of the university logo.
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Figure S4 Photographs of centimeter-scaled patterns of Clock, University Logo, Human Face, 

Lotus, Mushroom, Butterfly, Peppa Pig and Shark on SiO2/Si substrates based on the patterning 

process.
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Figure S5 (a) Photographs of mini-patterns of university logo, animal schematics (left) and 

micro-letters of “BIT” stands for Beijing Institute of Technology (right); (b) Optical microscope 

photographs of Panda, Cherries and Goldfish on SiO2/Si substrates based on the patterning 

process.
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Figure S6 Optical microscope photographs of Goldfish, Tiger and Cherries on glass substrates 

based on the patterning process.
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Figure S7 Optical microscope photographs of Tiger, Rabbit, Cherries, Panda and Goldfish on 

PET substrates based on the patterning process.
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Figure S8 Photographs of Butterfly and Cherries (left) and optical microscope photographs of 

Panda and Rabbit (right) on PI substrates based on the patterning process.
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Figure S9 Optical microscope photographs of one-channel photoconductor.
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Figure S10 Photocurrent responses of one-channel photoconductor under 2200 nm illumination 

(2.5 W/cm2).
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Figure S11 I-V characteristics of one-channel photoconductor under 520 nm illumination with 

different light intensities.
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Figure S 12 Photocurrent responses of one-channel photoconductor under 520 nm illumination 

with different light intensities.
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Figure S13 Photodetector noise testing.
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Figure S 14 Optical microscope photographs of a device of multiple “microroads”.
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Figure S 15  and EQE of multiple-channels photodetector with different wavelengths under 𝑅𝜆

0.5 W/cm2 light intensity illumination.
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Figure S16 Photographs of a 28 × 12 pixel photodetector arrays.
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Calculation Formula
Responsivity1 (Rλ), external quantum efficiency1 (EQE) and specific detectivity2 (D*) can be 

calculated by the following equations:

𝑅𝜆 =
𝐼𝑝ℎ ‒ 𝐼𝑑𝑎𝑟𝑘

𝑃·𝐴

𝐸𝑄𝐸 =
𝑅ℎ𝑐
𝑞𝜆

𝐷 ∗ =
𝑅𝜆 𝐴∆𝑓

𝑖𝑛

where  is the photocurrent,  is the dark current, P is the incident light intensity, A is 𝐼𝑝ℎ 𝐼𝑑𝑎𝑟𝑘

the effective area of the photodetector, h is Planck's constant, c is the speed of light, q is the 

electron charge,  is the noise current spectral density,  is the noise bandwidth, here being 1 𝑖𝑛 ∆𝑓

Hz and λ is the wavelength of the incident light.

The time required for the Iph to rise from 10% to 90% and decay from 90% to 10% of its 

maximum value are defined as rise time ( ) and decay time ( ), respectively.𝜏𝑟 𝜏𝑑

The 3dB bandwidth is an essential parameter to characterize the response speed of the system 

and is calculated as:3-5

𝑓3𝑑𝐵 =
0.443

𝜏𝑟
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