Supporting information

1. Schematic of the stacking process for the fabrication of heterostructures

Monolayers of WS₂ and MoSe₂ and few layers of hBN were prepared by mechanical stripping, respectively. To active modulation of the twist angle between the layers of MoSe₂/WS₂. The second harmonic generation (SHG) signals of the monolayer WS₂ and MoSe₂ need to be tested sequentially before stacking to obtain the corresponding crystal orientations. Afterward, a Polycarbonate (PC) film was bonded to the Polydimethylsiloxane (PDMS) surface and combined with a few layers of hBN as a pick-up "gripper" to pick up MoSe₂ first, and based on the second harmonic generation results, the position of MoSe₂ and WS₂ was adjusted to the interlayer angle of θ by controlling the deflection angle of the displacement stage with high-precision transfer, then WS₂ was picked up, and hBN was picked up by repeating the above steps, to obtain the hBN/MoSe₂/WS₂/hBN heterojunction. The friction vice prepared above was immersed in chloroform for 2 min to remove the residual adhesive film on the surface of the sample to ensure a clean surface. Finally, the samples were stored in a vacuum environment and heated to 280 °C for annealing for 8 hours.

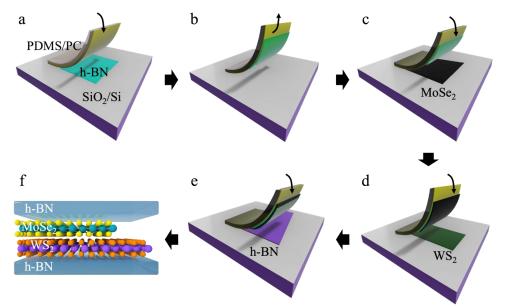


Figure S1 Pick and left technology for assembly of van der Waals heterostructures. (a–f) Sequential device fabrication method, describing the tear-and-stack co-lamination process used to create the hBN/MoSe₂/WS₂/hBN/ stacks.

2. Lifetime components filtered by 785/60 nm bandpass filter

To eliminate the effect of the instrumental response function (IRF), we used the tail-fitting method. The fitting results are shown in Table S1. Among them, the short-lived component $(^{\tau_1})$ is attributed to the hybridized exciton. The longlived component $(^{\tau_2})$ is attributed to effects related to surface defect, substrate and strains.

twist angle (°)	$\tau_{1}\left(ns\right)$	A ₁ (%)	$\tau_{2}\left(ns ight)$	$A_{2}(\%)$
1	3.32	93.7	0.57	6.3
3	2.73	91.4	0.55	8.6
5	1.38	91.1	0.58	8.9
7	1.13	93.9	0.553	6.1
10	0.54	94.0	0.54	6.0
12	0.502	92.2	0.502	7.8

Table S1. Twist-angle dependent exciton lifetimes and population