## Supporting Information

# High-performance Flexible Resistive Random-access <br> Memory Based on SnS $_{\mathbf{2}}$ Quantum Dots with Charge Trapping/de-trapping Effect 

Hua $\mathrm{An}^{1 \dagger}$, Yiyang $\mathrm{Li}^{1 \dagger}$, Yi Ren ${ }^{1}$, Yili Wan ${ }^{1}$, Weigao Wang ${ }^{1}$, Zhenhua Sun ${ }^{1}$, Junwen Zhong $^{2 *}$, and Zhengchun Peng ${ }^{1,3^{*}}$

1. State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen

University), School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
2. Department of Electromechanical Engineering, University of Macau, Macau, SAR, 999078, China
3. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

E-mail: junwenzhong@um.edu.mo,zcpeng@szu.edu.cn


Figure S 1 . The photograph of the $\mathrm{SnS}_{2} \mathrm{QD}$ solution under an incident light beam.


Figure S2. The high-resolution XPS spectra of (A) $\mathrm{Sn}+4$ 3d and (B) S-2 2p.

Figures S2 present the high-resolution XPS spectra. Through deconvolution, it is found that the S-2 2 p core energy peaks at 161.7, 163, and 165 belongs to $2 \mathrm{p}_{3 / 2}, 2 \mathrm{p}_{1 / 2}$, and S-O, respectively. Additionally, the split peaks at 487 and 495.4 are in accord with $\mathrm{Sn}+43 \mathrm{~d}_{5 / 2}$ and $\mathrm{Sn}+43 \mathrm{~d}_{3 / 2}$.


Figure S3. Cumulative probability of the SET and RESET voltages of a $\mathrm{SnS}_{2} \mathrm{QD}$ based memristor on rigid substrate (A) and a $\mathrm{SnS}_{2}$ QD based memristor on flexible substrate (B).


Figure S4. Current-voltage characteristics of $\mathrm{Ag} / \mathrm{PVP} / \mathrm{Au}$ devices.

The current-voltage characteristics within the voltage window of $-1.5 \mathrm{~V}-1.5 \mathrm{~V}$ are shown in Figure S4. The current of the device without $\mathrm{SnS}_{2}$ QDs stabilized around $10^{-10} \mathrm{~A}$ with increasing voltage and no marked switching behavior occurred throughout the process.


Figure S5. Specific fitting results to the switching region.

The linear fitting indicates a slope of $0.92 \sim 1$ in blue, which means $\log (\mathrm{I}) \propto \log (\mathrm{V})$
in this region. The slope of red line is approximated as 2 , and means $\log (\mathrm{I}) \propto \log \left(\mathrm{V}^{2}\right)$.
Significantly, the slope of the green part is more than 2.

