Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2024

Supporting Information

In-situ self-assembly of molybdenum carbide and iron carbides heterostructure on Ndoped carbon for efficient oxygen reduction reaction

Sagar Ingavale¹, Mohan Gopalakrishnan¹, Phiralang Marbaniang², Woranunt Lao-atiman¹, Ahmad Azmin Mohamad³, Mai Thanh Nguyen⁴, Tetsu Yonezawa⁴, Anita Swami^{5*}, Soorathep Kheawhom^{1,6,7*}

¹Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

² Electrochemical Materials Lab, Faculty of Science (Chemistry), Ontario Tech University, Oshawa, ON L1G0C5, Canada

³ Energy Materials Research Group (EMRG), School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia

⁴Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Hokkaido 060-8628, Japan

⁵Department of Chemistry, SRM Institute of Science & Technology, Kattankulathur, Chennai 603203, India

⁶Center of Excellence on Advanced Materials for Energy Storage, Chulalongkorn University, Bangkok 10330, Thailand

⁷Bio-Circular-Green-economy Technology & Engineering Center (BCGeTEC), Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

> *Corresponding author Email: <u>swamians@srmist.edu.in</u> (Anita Swami), <u>soorathep.k@chula.ac.th</u> (Soorathep Kheawhom)

Characterization

The structural details of synthesized composites were evaluated using X-ray powder diffraction (XRD) measurements on X'pert pro diffractometer, PANalytical using CuK_a line ($\lambda = 1.5406$ Å 40 kV, 40 mA) in the 20 range of 10° – 80° with scan rate 2°/min. Raman spectroscopy (HORIBA, LABRAM HR Evolution) was studied using 633 nm laser excitation for the prepared composites. X-ray photoelectron spectroscopy (XPS) measurements were carried out using Shimadzu ESCA 3400 instrument with AlK_a source (Physical Electronics system; 1486.6 eV monochromatic beam) operated at 15 kV, and the XPSPEAK41 software was used for curve fitting and data analysis. A linear-type background was used for data processing. Further, a detailed SEM study was carried out using 'Quanta 200 FEG FE-SEM'. Transmission electron microscopy (TEM) images were taken on a JEOL Japan, JEM-2100 Plus microscope operated at 100 kV.

Figure S1. SEM images: (a) KBC, and (b) the Mo₂C/Fe₃C-NC3 catalyst.

Figure S2. SEM images: (a, b) Mo₂C/Fe₃C catalyst, (c, d) MoO₂-C, and (e, f) Fe₂O₃-C composites.

Figure S3. HR-SEM element mapping corresponds to (a) EDS layered image, (b) Mo, (c) C, (d) Fe, (e) N, and (f) EDS of Mo₂C/Fe₃C-NC3 composite.

Figure S4. HR-TEM EDS spectrum of the prepared Mo₂C/Fe₃C-NC3 composite.

Figure S5. Polarization curves at different rotation: (a) KBC, and (b) Mo₂C/Fe₃C catalysts at scan rate 10 mV s⁻¹, in O₂ saturated 0.1 M KOH.

Figure S6. (a-b) SEM picture, and (c-d) low resolution TEM pictures for the Mo₂C/Fe₃C-NC3 composite after stability analysis.

Figure S7. Comparative CVs and ECSA values: (a, b) MoO_2 -C, (c, d) Fe_2O_3 -C, and (e, f) Mo_2C/Fe_3C -NC3 catalysts.

Table S1. XPS analysis.

No.	Name of the element	Core binding energy (eV)	FWHM (eV)
1.	C 1s	283.7	0.9
		284.5	0.9
		285.1	1.6
		286.8	2.0
2.	O 1s	530.5	1.6
		532.0	2.3
		533.7	1.7
3.	Mo 3d	228.6	1.0
		231.9	1.3
		232.6	1.3
		235.7	1.3
4.	N 1s	398.4	1.6
		399.1	1.9
		400.7	2.1
5.	Fe 2p	707.5	1.8
		710.5	2.6
		721	2.9
		725.4	1.26

No.	Catalyst	E _{onset} (V)	E _{1/2} (V)	J_{L}	Mass activity
				(mA/cm ²)	(mA/mg)
1.	MoO ₂ -C	0.89	0.76	4.2	38
2.	Fe ₂ O ₃ -C	0.95	0.8	5.6	83
3.	Mo ₂ C/Fe ₃ C-NC1	1.00	0.84	6.0	69
4.	Mo ₂ C/Fe ₃ C-NC2	0.97	0.86	5.9	139
5.	Mo ₂ C/Fe ₃ C-NC3	1.00	0.89	6.2	221
6.	Mo ₂ C/Fe ₃ C-NC4	1.00	0.88	5.5	190

 Table S2. Comparison of catalytic activity for the prepared catalysts.

No.	Catalyst	E _{onset} (V)	E _{1/2} (V)	J_L (mA/cm ²)	Reference
1	Mo ₂ C/Fe ₃ C-NC3	1.00	0.89	6.2	This work
2	Mo ₂ C@NC/Co@NG-900	0.922	0.867	5.5	1
3	Mo ₂ C–GNR	0.93	0.8	4.6	2
4	Mo ₂ C/NCNT-30	0.85	0.62	4.22	3
5	MoC/NGr-3	0.93	0.80	3.091	4
6	Mo ₂ C/CXG	0.89	0.71	4.1	5
7	Mo ₂ C/NPCNFs	0.9	0.77	4.8	6
8	Fe-PANI@NP	0.85	0.72	4.5	7
9	Fe ₃ C/N,S-CNS	0.98	0.86	5.8	8
10	Fe-SAs/Fe ₃ C-Fe@NC	0.98	0.925	5.6	9
11	Fe ₃ C@N-CNTs	0.98	0.85	5.0	10
12	Fe ₃ C-Co-NC	1.02	0.89	4.5	11

Table S3. Comparison of ORR catalytic performances of Mo₂C/Fe₃C-NC3 with those of other reported electro-catalysts in alkaline media

References

- Y. Wang, K. Li, F. Yan, C. Li, C. Zhu, X. Zhang and Y. Chen, *Nanoscale*, 2019, 11, 12563-12572, 10.1039/C9NR02981H.
- X. Fan, Y. Liu, Z. Peng, Z. Zhang, H. Zhou, X. Zhang, B. I. Yakobson, W. A. Goddard, III, X. Guo, R. H. Hauge and J. M. Tour, ACS Nano, 2017, 11, 384-394, 10.1021/acsnano.6b06089.
- 3. Y.-J. Song, J.-T. Ren, G. Yuan, Y. Yao, X. Liu and Z.-Y. Yuan, *Journal of Energy Chemistry*, 2019, **38**, 68-77, 10.1016/j.jechem.2019.01.002.
- H. Huang, C. Du, S. Wu and W. Song, *The Journal of Physical Chemistry C*, 2016, **120**, 15707-15713, 10.1021/acs.jpcc.5b10341.
- D. Mladenović, M. Vujković, S. Mentus, D. M. F. Santos, R. P. Rocha, C. A. C. Sequeira, J. L. Figueiredo and B. Šljukić, *Nanomaterials*, 2020, 10, 1805, 10.3390/nano10091805.

- H. Wang, C. Sun, Y. Cao, J. Zhu, Y. Chen, J. Guo, J. Zhao, Y. Sun and G. Zou, *Carbon*, 2017, **114**, 628-634, 10.1016/j.carbon.2016.12.081.
- R. Venegas, C. Zúñiga, J. H. Zagal, A. Toro-Labbé, J. F. Marco, N. Menéndez, K. Muñoz-Becerra and F. J. Recio, *ChemElectroChem*, 2022, 9, e202200115, 10.1002/celc.202200115.
- Q.-D. Ruan, R. Feng, J.-J. Feng, Y.-J. Gao, L. Zhang and A.-J. Wang, *Small*, 2023, 19, 2300136, 10.1002/smll.202300136.
- X. Sun, P. Wei, S. Gu, J. Zhang, Z. Jiang, J. Wan, Z. Chen, L. Huang, Y. Xu, C. Fang, Q. Li, J. Han and Y. Huang, *Small*, 2020, 16, 1906057, 10.1002/smll.201906057.
- 10. L. Cui, Q. Zhang and X. He, *J. Electroanal. Chem.*, 2020, **871**, 114316, 10.1016/j.jelechem.2020.114316.
- H. Wang, C. Sun, E. Zhu, C. Shi, J. Yu and M. Xu, J. Alloys Compd., 2023, 948, 169728, 10.1016/j.jallcom.2023.169728.