Supplementary Information

Reactivity-Matched Synthesis of Monodisperse Ag(In,Ga)S₂ QDs with Efficient Luminescence

Naiwei Wei^{1, 2}, Hong Zhu^{1, 2}, Danni Yan^{1, 2}, Shuai Yang^{1, 2}, Lili Xu^{1, 2}, Shengli Zhang¹,

², and Yuhui Dong^{1, 2, *}, Yousheng Zou^{1, 2, *}, Haibo Zeng^{1, 2, *}

¹Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

²Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Nanjing 210094, China

Fig. S1 TEM images and the corresponding size distribution histograms of the AIGS QDs synthesized using InAc₃ and InBr₃, respectively.

Fig. S2 XPS spectra of AIGS@GaS_x core/shell QDs for (a) Ag 3d, (b) In 3d, (c) Ga 2p, and (d) S 2p regions synthesized using InI_3 before and after etching.

Fig. S3 Fitted PL spectra of the AIGS QDs synthesized using (a) InCl₃, (b) InAc₃,(c) InBr₃, and InI₃, respectively.

Fig. S4 TEM images of the AIGS@GaS_x QDs synthesized using $InCl_3$ and InI_3 , respectively.

Fig. S5 Absorption curves of $\mathrm{AIGS}@\mathrm{GaS}_x$ core/shell QDs with different In/Ga ratios.

Fig. S6 XRD spectra of the AIGS/GaS_x core/shell QDs with In/Ga molar ratios of 2:4, 3:4, 4:4, 5:4, and 6:4 synthesized with the same metal salt InI_3 .

Fig. S7 TEM image of the AIGS/GaS_x core/shell QDs with In/Ga molar ratios of (a) 2:4, (b) 3:4, (c) 4:4, HRTEM image of the AIGS/GaS_x core/shell QDs with In/Ga molar ratios of (d) 2:4, (e) 3:4, and (f) 4:4.

Fig. S8 XPS spectra of AIGS QDs synthesized using $InCl_3$, $InAc_3$, $InBr_3$, and InI_3 , respectively.

Fig. S9 XPS spectra of AIGS QDs for In 3d regions synthesized using difference In sources.

Fig. S10 Photographs for reaction stage under white light (upper photos) and UV light (bottom photos) extracts from 70 °C to 150 °C 15 min of AIGS QDs synthesized using InCl₃, InAc₃, InBr₃, and InI₃, respectively.

Table S1. Elements Hard and Soft Acid and Base (HSAB) diagram.

	Base	Hard base	Junction base	Soft base
Acid		$CH_3COO^- \sim Cl^-$	Br-	I-
Hard acid	In ³⁺	Strong bond	Relatively strong bond	Weak bond

Table S2. Calculated bond formation energies from $In(A)_3$ to $In^{3+}(A = Cl^-, Ac^-, A$

Dr-		I	·-/
DI	,	I	.)

	InCl ₃	InAc ₃	InBr ₃	InI ₃
E _{form}	1.01 eV	2.59 eV	0.86 eV	0.50 eV

Table S3. Average lifetimes and radiative composite and nonradiative occupancies of AIGS QDs synthesized using InCl₃, InAc₃, InBr₃, and InI₃, respectively.

AIGS	$<\tau_{av}>$ (ns)	τ_1 (ns)	$ au_2$ (ns)	f_1	f_2
InCl ₃	177.92	28.04	214.55	73.19%	26.81%
InAc ₃	175.41	34.79	203.90	57.69%	42.31%
InBr ₃	181.94	38.52	208.46	45.21%	54.79%
InI ₃	197.24	42.70	223.08	38.22%	61.78%

Table S4. Element atom % of QD and etch-QD analyzed by XPS.

Samala			Elemer	nt atom %		
Sample	Ag	In	Ga	Ag+In+Ga	S	
QD	11.88	5.49	17.43	34.80	65.20	
Etch-QD	18.18	9.09	5.84	33.11	66.89	

Table S5. Average lifetimes and radiative composite and nonradiative occupancies

AIGS@GaS _x	$<\tau_{av}>$ (ns)	τ_1 (ns)	τ ₂ (ns)	τ ₃ (ns)	f_1	f_2	f_3
InCl ₃	106.03	6.89	41.83	207.60	5.01%	33.37%	61.62%
InAc ₃	99.01	7.85	44.54	189.75	8.09%	37.66%	54.25%
InBr ₃	84.63	5.92	35.51	133.64	7.45%	46.38%	46.17%
InI ₃	76.66	4.35	26.86	157.10	8.55%	54.69%	36.76%

of AIGS@GaSx QDs synthesized using InCl₃, InAc₃, InBr₃, and InI₃, respectively.

Table S6. Summary of properties based on I-III-VI and derivative QDs.

QDs	PL (nm)	FWHM (nm)	Colour	PLQY (%)	Ref
AIS@GaS _x	600	30	Yellow	56%	1
AIS@GaS _x	~580	~33	Yellow	72.3	2
AIS@GaS _x	560	45	Yellow	26.7	3
AIS@GaS _x	530	~37	Green	40	4
AIS@GaS@ZnS	575	~48	Yellow	~60	5
AIGS@GaS _x	530	41	Pure-Green	~28	6
AIGS@GaS _x	568	36	Yellow	71	7
AIGS@GaS _x	518	36	Green	68	8
AIGS@GaS _x	543	37	Green	99	9
AIGS@GaS _x	528	31	Pure-Green	53	9
AIGS@AGS	517	30	Green	96	10
AIGS@GaS _x	530	31	Pure-Green	90	This work

References

- T. Uematsu, K. Wajima, D. K. Sharma, S. Hirata, T. Yamamoto, T. Kameyama, M. Vacha, T. Torimoto, S. Kuwabata, *NPG Asia Mater.* 2018, 10, 713.
- 2 W. Hoisang, T. Uematsu, T. Yamamoto, T. Torimoto, S. Kuwabata, *Nanomaterials*. 2019, **9**, 1763.
- 3 G. Motomura, K. Ogura, Y. Iwasaki, T. Uematsu, S. Kuwabata, T. Kameyama, T. Torimoto, T. Tsuzuki, *Appl. Phys. Lett.* 2020, **117**, 091101.
- 4 T. T. T. Huong, N. T. Loan, T. D. T. Ung, N. T. Tung, H. Han, N. Q. Liem, *Nanotech.* 2022, **33**, 355704.
- 5 N. T. Loan, T. T. T. Huong, M. A. Luong, L. Van Long, H. Han, T. D. T. Ung, N. Q. Liem, *Nanotech*. 2023, 34, 315601.
- 6 T. Kameyama, M. Kishi, C. Miyamae, D. K. Sharma, S. Hirata, T. Yamamoto, T. Uematsu, M. Vacha, S. Kuwabata, T. Torimoto, ACS Appl. Mater. Interfaces. 2018, 10, 42844.
- 7 W. Hoisang, T. Uematsu, T. Torimoto, S. Kuwabata, Chem. Lett. 2021, 50, 1863.
- 8 W. Hoisang, T. Uematsu, T. Torimoto, S. Kuwabata, *Inorg. Chem.* 2021, 60, 13101.
- 9 T. Uematsu, M. Tepakidareekul, T. Hirano, T. Torimoto, S. Kuwabata, *Chem. Mater.* 2023, **35**, 1094.
- H. J. Lee, S. Im, D. Jung, K. Kim, J. A. Chae, J. Lim, J. W. Park, D. Shin, K. Char, B. G. Jeong, J.-S. Park, E. Hwang, D. C. Lee, Y.-S. Park, H.-J. Song, J. H. Chang, W. K. Bae, *Nat. Commun.* 2023, 14, 3779.