1 Polypyrrole and Activated Carbon Enriched MnCo₂O₄ Ternary Composite as

2	Efficient Electrode Material for Hybrid Supercapacitors
3	Simran Kour, Pawanpreet Kour, A. L. Sharma*
4	Department of Physics, Central University of Punjab, Bathinda, Punjab, India-151401
5	*Corresponding author: <u>alsharma@cup.edu.in</u>
6	Supporting Information (SI)

7 1. Electrode preparation method

8 The electrodes were prepared by blending the synthesized active material, PVDF (binder), and 9 carbon black (conductive element) in a ratio of 8:1:1 to get consistent slurry with the addition of 10 N-Methyl-2-pyrrolidone (NMP). Nickel foam with area of 1 cm² was then coated with this slurry 11 and dried at 60 °C overnight. The separator (Whatman paper) wetted by 6M KOH electrolyte was 12 sandwiched between the two electrodes (cathode and anode) and pressed using a hydraulic press 13 to get the desired cell configuration.

14 2. Electrochemical measurements

The capacitive response of the electrode material corresponding to a voltage window of -1 to +1V was evaluated from CV and GCD in 2-electrode configuration. The EIS analysis was carried out for 10^5 -0.1 Hz of frequency at open-circuit voltage. For asymmetric supercapacitor, the voltage range was 0-1.6 V. The Formulae used for determining various parameters such as specific capacitance, energy density, and power density has been provided in **Table S1**.

Parameter	Formula	Terms used			
Bragg's law	$2d\sin\theta = n\lambda$	'd' is inter-planar spacing, ' 2θ ' is			
		bragg's diffraction angle, n' is an			
		integer, λ is the wavelength of X-ray.			
Interplanar spacing	<i>d</i> =	(hkl) are miller indices of lattice			
	$\frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}$	plane, (a, b, c) are lattice parameters			
	N.C. I	of the crystal.			
Crystallite size, D	$D = \frac{K \cdot \lambda}{1 + 1 + 1 + 2}$	K is a constant, λ is the wavelength of			
(Schherrer equation)	$\omega \times \cos \theta$	X-ray, ' ω ' is the FWHM, '2 θ ' is			
		bragg's diffraction angle.			
Specific capacitance, C_{sp} for	IdV	'I' is the current, dV is the potential			
single electrode (from CV)	$C_{sp} = \frac{g}{m \times v \times dV}$	window, m' is the mass of active			
		material, ' ν ' is the scan rate.			
Specific capacitance, C_{sp} for	$C_{sp} = \frac{2 \times I \times \Delta t}{1 \times \Delta t}$	'I' is the current, dt' is the			
single electrode (from GCD)	$m \times aV$	discharging time, m' is the mass of			
		active material.			
Specific capacitance, C_{sp} for	$C_{sp} = \frac{I \times \Delta t}{I \times III}$	'I' is the current, ' dt ' is the			
SSC/ASC (from GCD)	$m \times av$	discharging time, $'m'$ is the mass of			
		active material.			
Energy density, E_d	$E_{d} = \frac{C_{sp} \times (dV)^{2}}{2}$	C_{sp} is the specific capacitance, dV is			
(from GCD)	^{<i>a</i>} 7.2	the voltage window.			

Power density, P_d	$P_d = \frac{E_d \times 3.6}{\Delta t}$ 'E _d ' is the energy density, Δt is the
(from GCD)	discharging time.
Coulombic efficiency, η	$\eta = \frac{t_d \times 100}{t_d}$ ' t_d ' is the discharging time and ' t_d ' is
	t_c the charging time.
Response time, τ	$\tau = \frac{1}{\tau}$ 'v' is the frequency corresponding to
(from EIS)	phase angle $\theta = 45^{\circ}$.

3. Results and Discussion

Fig. S1: (a) XRD and (b) FTIR patterns of MCO, AC, and PPY.

Table S2: XRD analysis for MnCo₂O₄ (MCO) microspheres.

Angle	Lattice plane	Interplanar	Crystallite		
2^{θ} (degree) (hkl)		spacing,	size (nm)		
		d (Å)			
19.3	(111)	4.6	9.1		

31.5	(220)	2.8	11.2
37.1	(311)	2.4	11.1
38.7	(222)	2.3	11.9
45.3	(400)	2.0	11.4
55.5	(422)	1.6	14.2
59.5	(511)	1.5	10.7
65.3	(440)	1.4	10.6

Fig. S2: (a-c) TEM images of MAP-20 at different resolutions.

Fig. S3: XPS survey scan of MAP-20.

Fig. S4: BET analysis of pristine MnCo₂O₄ (MCO).

35 Fig. S5: (a) CV curves of MCO, (b) GCD curves of MCO and (c) Nyquist plot of MCO with

36 fitted circuit.

38

Fig. S6: (a-d) CV of MAP-x (x = 0, 5, 10, and 30) at various scan rates.

39 **Power law**

40 The power law gives the correlation of the current (i) and scan rates (v) as follows:

$$41 \quad i = av^b \tag{S1}$$

42 where, a and b are adjustable constants.

43 Trasatti method

44 The total capacitance C_T of the electrode material is given by the combination of capacitance

45 contribution of outer surface $\binom{C_o}{}$ and inner surface $\binom{C_i}{}$ and is given by the following formula:

$$46 \quad C_T = C_o + C_i \tag{S2}$$

47
$$C = const. \times v^{-1/2} + C_o$$
 (S3)

$\frac{1}{C} = const. \times v^{1/2} + \frac{1}{C^{T}}$ 49 (S4)

50 where, C is the sp. capacitance calculated from the CV data.

Fig. S7: (a-c) Charge storage kinetics of MAP-x (x = 0, 5, 10, and 30).

Fig. S8: (a-d) GCD of MAP-x (x = 0, 5, 10, and 30) at various scan rates.

Material	C _{sp}	Voltage	ASC/SSC	E _d	Pd	Stability,	Reference
	(Fg ⁻¹)	window		(Wh kg ⁻¹)	(kW	%	
		(V)			kg-1)	(cycles)	
NiCo ₂ O ₄ /NF@PPY	1717 C g ⁻¹	0-1.6	ASC	68.9	1.77	89.2	1
						(10,000)	
MnCo ₂ O ₄ -	2364	0-1.6	ASC	25.7	16.1	85.5	2
graphite@PPY						(10,000)	
NiCo ₂ O ₄ @PPY	2244	0-1.6	ASC	58.8	0.36	89.2	3

	(1 A g ⁻¹)					(5,000)	
NiCo2O4/CNF@PPY	910	0-1.5	ASC	40.8	0.73	88.0	4
1100204 011 (011 1	(1 A g^{-1})	0 1.5	nise	10.0	0.75	(10,000)	
NiCo2O4/Co2S4/MnS	2557	0-1.6	ASC	81.1	0.80	83.6	5
@PPY	(1 A g^{-1})					(20,000)	
MgCo ₂ O ₄ /PPY	988	0-1.6	ASC	40.0	1.54	84.0	6
	(1 A g ⁻¹)					(10,000)	
MnNi ₂ O ₄ /PPY	304	0-1.6	ASC	35.9	0.80		7
	(1 A g ⁻¹)						
CC@NiCo2O4@PPY	1687	0-1.5	ASC	46.5	0.72	80.0	8
	(1 A g ⁻¹)					(10,000)	
NiCo2O4@PANI	561	0-1.2	ASC	6.4	0.28	86.2	9
	(10 mV s ⁻¹)					(3,000)	
ZnCo ₂ O ₄ @PANI	720	0-0.5				96.4	10
	(10 mV s ⁻¹)					(10,000)	
CuCo2O4/GO@PANI	312.7	0-1.2	SSC	62.5	5.99	84.2	11
	(1 A g ⁻¹)					(5,000)	
CoFe ₂ O ₄ /PANI/GO	346.9	0-1.2	SSC	69.3	5.98	79.0	12
	(1 A g ⁻¹)					(5,000)	

Fe-MnCo ₂ O ₄ @PPY	422.4 (2 mA cm ⁻²)	0-1	SSC	519.9 mWh cm ⁻²		94.7 (7,000)	13
NiMoO4/rGO/PANI	1150 C g ⁻¹ (1 A g ⁻¹)	0-1.7	ASC	82.43	0.85	94.5 (10,000)	14
NiCo2O4/CF@PANI	369 mAh g ⁻¹	0-1.5	ASC	60.6	2.32		15
MnCo ₂ O ₄ -AC@PPY	945.77 (5 mV s ⁻¹)	0-1.6	ASC	88.12	1.6	89.68 (10,000)	This work

57 References

- 58 1. R. BoopathiRaja and M. Parthibavarman, *Electrochimica Acta*, 2020, **346**, 136270.
- 59 2. F. Wang, X. Lv, L. Zhang, H. Zhang, Y. Zhu, Z. Hu, Y. Zhang, J. Ji and W. Jiang, *Journal of Power* 60 *Sources*, 2018, **393**, 169-176.
- 61 3. D. Kong, W. Ren, C. Cheng, Y. Wang, Z. Huang and H. Y. Yang, ACS applied materials & interfaces,
 62 2015, 7, 21334-21346.
- 63 4. T. H. Ko, D. Lei, S. Balasubramaniam, M.-K. Seo, Y.-S. Chung, H.-Y. Kim and B.-S. Kim,
 64 *Electrochimica Acta*, 2017, **247**, 524-534.
- 65 5. L. He, Z. Guo, G. Wang and M. Li, *Journal of Energy Storage*, 2024, **79**, 110130.
- 66 6. S. Sathishkumar, M. Karthik, R. Boopathiraja, M. Parthibavarman, S. Nirmaladevi and S.
 67 Sathishkumar, *J Mater Sci.: Mater Electron* 2022, **33**, 21600-21614.
- A. Sathiyan, E. Elaiyappillai, S.-F. Wang, S. Dhineshkumar and P. M. Johnson, *New Journal of Chemistry*, 2024, 48, 3080-3088.
- J. Yu, D. Yao, Z. Wu, G. Li, J. Song, H. Shen, X. Yang, W. Lei, F. Wu and Q. Hao, ACS Applied Energy
 Materials, 2021, 4, 3093-3100.
- X. Li, H. Xie, Y. Feng, Y. Qu, L. Zhai, H. Sun, X. Liu and C. Hou, *Journal of Applied Polymer Science*,
 2023, 140, e54580.
- A. Kathalingam, S. Ramesh, H. M. Yadav, J.-H. Choi, H. S. Kim and H.-S. Kim, *Journal of Alloys and Compounds*, 2020, 830, 154734.
- 76 11. S. Verma, V. K. Pandey and B. Verma, *Synthetic Metals*, 2022, **286**, 117036.
- 77 12. S. Verma, T. Das, V. K. Pandey and B. Verma, *Journal of Molecular Structure*, 2022, **1266**, 133515.

- 79
 13.
 Z. Chen, X. Zu, L. Chen, Y. Qi, W. Jian, Y. Wu, W. Zhang, X. Lin, G. Yi and Q. Liu, ACS Applied

 80
 Energy Materials, 2022, 5, 5937-5946.
- 81 14. H. M. Fahad, R. Ahmad, F. Shaheen, A. A. Ifseisi, M. H. Aziz and Q. Huang, *Electrochimica Acta*,
 2024, 143756.
- 83 15. S. K. Shinde, S. S. Karade, N. T. N. Truong, S. S. Veer, S. F. Shaikh, A. M. Al-Enizi, A. D. Jagadale, H.
- 84 M. Yadav, M. S. Tamboli and C. Park, *Journal of Energy Storage*, 2024, **78**, 109960.