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Synthesis of Co:Ni:CB7 nanocomposites  

The metal alloy nanoparticles were synthesised by chemical reduction method using sodium 

borohydrate (NaBH4) at room temperature. Briefly, 15 mM of metal salts (mixture of cobalt 

acetate and nickel chloride) and 0.5 mM of host CB7 were dissolved in 25 ml of nonpure 

water. To the Co:Ni mixture solution 150 mM of 25 ml NaBH4 solution was added slowly under 

constant stirring. Within few minutes of the addition of NaBH4, black colour suspension of 

fine particles appeared. The black suspension was centrifuged under 10000 RPM for 10 

minutes and black solid nano composites were obtained. These nanocomposites were 

washed with water under centrifugation once to remove excess NaBH4. Finally, these 

nanoparticles were washed with methanol and dried under IR lamp.  Different compositions  

of Co and Ni in the nanocomposites were achieved by taking different stoichiometric ratio of 

Co and Ni salts by maintaining a total metal concentration of 15 mM. The Co:Ni nanoalloys 
with different compositions were also prepared using above method without adding CB7.  
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Fig. S1 FTIR of AB, CB7 and CB7:AB systems. 
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Fig. S2 Fluorescence spectrum of cucurbit[7]uril-complexed neutral red (NR) in the presence 
of AB. 
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Fig. S3 EDS spectra (A and B) of (Co85:Ni15)50:(CB7)50 and (Co85:Ni15) nanoalloy composites, 
respectively. 
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Fig. S4 Thermogravimetric traces of CB7 (a) and (Co85:Ni15)50:(CB7)50 (b).  



 

Fig. S5 (A) N2 adsorption-desorption isotherm at 77 K for Co85:Ni15 and (Co85:Ni15)50:(CB7)50. 
(B) Corresponding pore size distributions. Co85:Ni15 shows 2 prominent peaks at around 2.35 

nm and 8.3 nm. (Co85:Ni15)50:(CB7)50 shows hierarchical porosity with peak maxima around 
3.9, 6.9, 9.6, 11.7, 15.9 and 26.4 nm. 

  

 

 

 

Table S1. Textual properties of Co85:Ni15 and (Co85:Ni15)50:(CB7)50 nanocomposites derived 
from N2 adsorption-desorption isotherm. 

 

Sample Textural Properties 

Vp
a (cc/g) Dpore

b (nm) 

Co85:Ni15 0.107 2.38 

(Co85:Ni15)50:(CB7)50 0.217 3.94 

a Total pore volume, b Average pore width 
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Fig. S6 H2 release yield measurements carried out with different compositions of the 
nanoalloys (Co60:Ni40; Co85:Ni15) at different temperatures (A); H2 release from the hydrolysis 
of AB with (Co60:Ni40)50:(CB7)50 (B); (Co45:Ni55)50:(CB7)50 (C) and at different temperatures. (D) 
represent the comparison of the (Co91:Ni09)50:(CB7)50 with (Co85:Ni15)50:(CB7)50 at 35°C 

showing decrease in the H2 release rate with higher Co content.  Inset of A, B and C shows the 
Arrhenius plot (ln k vs 1/T) for the AB system in the presence of Co85:Ni15, (Co60:Ni40)50:(CB7)50 

and (Co45:Ni55)50:(CB7)50, respectively. 
 

 

 

Synthetic Procedure for AB regeneration 

 
Step-I (Conversion of NH4BO2 to boric acid) 

Acidification of NH4BO2 solution with sulfuric acid led to the formation of boric acid which 

crystallized at very low temperature (~5oC). The FT-IR signals of synthesized boric acid 

matches well with those of commercial boric acid obtained from Sigma-Aldrich.    
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Fig. S7 FT-IR spectra of both synthesized and commercial boric acid. 



 

Step-II (Conversion of boric acid to trimethyl borate) 

Esterification of boric acid was carried out in methanol in presence of low concentration of 

sulfuric acid as catalyst to synthesize trimethyl borate (B(OMe)3). Due to the very small 

difference in the boiling point of both methanol and B(OMe)3, azeotropic mixture of methanol 

and B(OMe)3 was obtained and fractional distillation was carried out to get the pure B(OMe)3. 

The synthesized B(OMe)3 was characterized by FT-IR and GC-MS. The FT-IR signal at 1353 cm-

1 due to -CH3 bending in B(OMe)3 and GC-MS signals at 104 due to the molecular peak and 

other fragmented signals matches well with the signals of trimethyl borate from GC -MS 

library. 

 

Fig. S8 GC-MS spectra of both synthesized and standard trimethyl borate. 
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Fig. S9 FT-IR spectra of both synthesized and commercial trimethyl borate. 

 

 

 



Step-III (Conversion of trimethyl borate to ammonia borane) 

 

Trimethyl borate was reduced with lithium aluminium hydride in the presence of NH4Cl in THF 

to synthesize ammonia borane. The FT-IR and 1H NMR spectra of regenerated ammonia 

borane matches well with that of commercially available ammonia borane.     
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Fig. S10 FT-IR (A) and 1H NMR (B) spectra of both regenerated and commercially available 
ammonia borane.  
 
 

 
Chronopotentiometry of Co:Ni and Co:Ni:CB7 

Beside catalytic efficiency, stability of catalyst was also tested by 8 hours of 

chronopotentiometry. It took some times for Co:Ni to achieve the current density of -10 

mA/cm2 whereas Co:Ni:CB7 showed stable current density from the starting point. Co:Ni 

nanoparticles first achieved -10 mA/cm2 current below -0.5 V (i.e. -0.488 V) vs RHE within 30 

minutes (Fig. S11 A). Later it’s activity reduced and after almost 2 hours it achieved stable 

current density at above -0.5 V. Whereas Co:Ni:CB7 maintained a constant potential 
throughout the whole time (Fig. S11 B).  

 

0.22 0.24 0.26 0.28 0.30 0.32
-40

-20

0

20

40

C
u

rr
e

n
t 

d
e

n
s
it
y
 (


A

/c
m

2
)

E (V) / RHE

 10 mV/s

 20 mV/s

 30 mV/s

 40 mV/s

 60 mV/s

 80 mV/s

(A)

 
0.22 0.24 0.26 0.28 0.30 0.32

-9

-6

-3

0

3

6

9

C
u
rr

e
n
t 
d
e

n
s
it
y
 (


A

/c
m

2
)

E (V) / RHE

 10 mV/s

 20 mV/s

 30 mV/s

 40 mV/s

 60 mV/s

 80 mV/s

(B)

 

Fig. S11 Cyclic voltammograms for the (Co85:Ni15)50:(CB7)50 (A) and Co85:Ni15 (B) 
nanocomposites at different scan rates. 
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Fig. S12 Linear sweep voltammograms (LSV) of the GC electrode coated with: no coating (1), 
rGO (2), Co:Ni:CB7 (3) and Co:Ni:CB7-rGO (4). 


