Supporting Information

Hydrogel based on Fe(II)-GMP demonstrates Tunable Emission, Self-healing Mechanical Strength and Fenton Chemistry mediated Notable Antibacterial Properties

Umesh,^a⁺ Vysakh C. Chandran,^a⁺ Pranoy Saha, ^b Debasish Nath, ^a Sayan Bera,^b Santanu Bhattacharya^{*, b,c} and Asish Pal^{*,a}

^a Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306 (India) E-mail: <u>apal@inst.ac.in</u>

^b School of Applied &Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032 (India) E-mail: <u>sb23in@yahoo.com</u>

^c Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Yerpedu Mandal, Tirupati District, Andhra Pradesh, 517619 (India)

†Umesh and Vysakh contributed equally.

TABLE OF CONTENTS

Materials and Methods	S2
Synthesis of Tetra(4-carboxylphenyl) ethylene (1)	S2
NMR characterization of 1_{GMP} & Angular sweep oscillatory rheology of 1_{GMP}	S 3
Characterization and properties of metallogels	S4
Control gelation experiments	S 5
Fenton reaction and mechanical properties	S 5
Rheological studies of Fe-1 _{GMP} V/S Fe-1 _{GMP} +AA	S6
Antimicrobial and Biocompatibility studies	S7
Reference	S7

Materials and methods

Materials

All reagents, both chemical and biological, employed in this study were sourced from reputable manufacturers and maintained the highest quality standards. Sigma supplied 5'-GMP and FeCl₂.4H₂0, while spectrochem chemicals provided MgCl₂ and CaCl₂. Biological materials, including bacterial growth media such as Luria Bertani broth and Nutrient agar, were obtained from HIMEDIA. Nuclear Magnetic Resonance spectra (¹H-NMR) were recorded using a FT-NMR Bruker 400 MHz NMR spectrometer. UV–visible spectra were recorded using an Agilent Cary 60 spectrophotometer. Circular Dichroism (CD) spectra were obtained using a JASCO J-1500 Circular Dichroism Spectrometer in Easton, MD, USA. Fluorescence spectra were recorded with an Edinburgh Instruments Spectrofluorometer FS5. X-ray diffraction (XRD) studies were conducted using a Bruker D8 Advance Powder X-ray Diffractometer. Scanning Electron Microscopy (FESEM) images were acquired using a JEOL JEM 2100 scanning electron microscope from Tokyo, Japan.

Synthesis of Tetra(4-carboxylphenyl) ethylene (1)

The molecule TPE, **1** was synthesized by following the previously reported procedure^{S1} and characterized by ¹H-NMR spectroscopy.

Scheme 1

Reagents & Conditions: (i) TiCl₄, Zn Powder, Dry THF, 0 -70°C, overnight; (ii) Br₂, Glacial Acetic acid, DCM, 0 °C, 3h; (iii) CuCN, DMF, reflux, 2 days; (iv) KOH, ethylene glycol, 200 °C, 3 days.

¹H-NMR (DMSO-*d*6) of **3**, δ (ppm): 12.93 (br *s*, 4H), 7.73 (*d*, 2H), 7.13 (*d*, 2H).

NMR characterization of $1_{GMP} \ hydrogel$

Fig. S1 ¹H-NMR spectra for the **1** in DMSO-d₆, 5'-GMP in D₂O and **1**_{GMP} in D₂O, showing the shifts in peak position of the aromatic protons.

Characterization and properties of metallogels, M-1GMP

Fig. S2 (A) Comparative UV-vis spectra of the metallogels, **M-1**_{GMP} with **1**_{GMP}. (B) Fluorescence spectra showing enhanced emission of metallogels, **M-1**_{GMP}. (C) PXRD data showing absence of peak at $2\theta = 27.5^{\circ}$ corresponding to G4-quadruplex. (D) ¹H NMR spectra of the metallogels, **M-1**_{GMP} showing shift of the pentose sugar protons. (E) FE-SEM image of **Fe-1**_{GMP} showing fibrous morphology.

Gelation studies

Fig. S3 (A) Control gelation experiment of G-quartet of GMP with TPE (1) and Fe. (B) Reversible hydrogel formation of **Fe-1**_{GMP} by subsequent heat-cool cycles.

Fenton reaction in metallogels, M-1GMP

Fig. S4 (A) Concentration dependent degradation of MB dye with addition of H_2O_2 in presence of **Fe-1**_{GMP}. (B) Degradation MB in presence of H_2O_2 only. (C-D) Control experiments showing no ROS formation in the hydrogels of **Ca-1**_{GMP} & **Mg-1**_{GMP}.

Rheological studies of Fe-1_{GMP} V/S Fe-1_{GMP}+AA

Fig. S5 (A-B) Frequency sweep and amplitude sweep rheological study of **Fe-1**_{GMP} after loading AA. (C) Comparison of the storage moduli of **1**_{GMP}, **Fe-1**_{GMP+}**AA** and **Fe³⁺** loaded **1**_{GMP}.

Antimicrobial and Biocompatibility studies

Fig. S6 (A) Images of bacterial colonies formed treating silver sulfadiazine (SSD) at its MIC, *E. coli* 23.7 μ g/mL (upper panel) *S. aureus* 47.5 μ g/mL (lower panel) and (B) corresponding histogram of comparison of survival percentage of bacterial cells. Control is without SSD administration. (C) MTT assay for **Fe-1**_{GMP} and **Fe-1**_{GMP} + **AA** loaded hydrogels in L929 cell line.

Reference:

S1. A. Bhunia, V. Vasylyevaa, C. Janiak, Chem. Commun., 2013, 49, 3961-3963.