Supporting Information for

Efficient plasmonic water splitting by heteroepitaxial junction-induced faceting of gold nanoparticles on anatase titanium(IV) oxide nanoplate array electrode

Shin-ichi Naya,^a Yoko Morita,^b Hisashi Sugime,^{b,c}

Tetsuro Soejima,^{b,c} Musashi Fujishima,^{b,c} Hiroaki Tada^{d*}

^a Environmental Research Laboratory, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.

^b Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.

[°] Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.

^d Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.

* To whom correspondence should be addressed: Prof. Hiroaki Tada

E-mail: hiroaki.tada@mirai.nagoya-u.ac.jp

Table of Contents

Table S1. IPCE for water splitting on Au plasmonic photocatalyst electrodes.	·S3
Table S2. EIS parameters for Au/TiO2 plasmonic Electrodes.	·S4
Table S3. Maximum enhancement factors $(E ^2/ E_0 ^2)$ calculated for HS-Au/A-TiO ₂ , t-Oh-Au/A-TiO ₂ , and t-Oh-Au/R-TiO ₂ at the LSPR peak wavelengths by the 3D-FDTD method.	·S5
Fig. S1. (a) TEM image and Au particle size distribution (a) and HR-TEM image (b) of CR-Au/A-TiO ₂ NPLA.	·S6
Fig. S2. HR-TEM image (a) and Au particle size distribution (b) of DP-Au/R-TiO ₂ NWA	·S6
Fig. S3. Contact angle of Au NP on the A-TiO ₂ (001) surface.	·S7
Fig. S4. Au4f XP spectra of DP-Au/A-TiO ₂ NPLA, DP-Au/R-TiO ₂ NWA, and CR-Au/A-TiO ₂ NPLA.	·S7
Fig. S5. (a) FDTD calculation models for CR-Au/A-TiO ₂ (HS-Au/A-TiO ₂) and DP-Au/A-TiO ₂ NPLA (t-Oh-Au/A-TiO ₂) (b) FDTD-simulated absorption spectra.	·S8
Fig. S6. Local electric field distribution for t-Oh-Au($d_{Au} = 7.6 \text{ nm}$)/A-TiO ₂ calculated by the 3D-FDTD method.	·S8
Fig. S7. Photocurrent (<i>J</i>)-potential (<i>E</i>) curves of DP-Au/A-TiO ₂ NPLA and DP-Au/R-TiO ₂ NWA electrodes. The current density in each system was calculated using the specific surface area of the nanostructured TiO ₂ determined by the BET method.	·S9
Fig. S8. Local electric fields for t-Oh-Au/R-TiO ₂ (a) calculated by the 3D-FDTD method, and the local electric field distributions (b).	·S9

Plasmonic	Size	Semiconductor	Crsytal	IPCE (%)	Wavelength	Ref.
metal		electrode	form of			
			TiO ₂			
Au	5.2 nm	TiO ₂ NWA	anatase	0.03	520 nm	18
Au	4.7 nm	mp-TiO ₂	anatase	2.6×10^{-3}	560 nm	21
Au	5 nm	mp-TiO ₂	rutile	3×10-4	600 nm	22
Au	< 20 nm	TiO ₂ NWA	rutile	~0.03	520 nm	23
Au	7.6	TiO ₂ NPLA	anatase	0.39	600 nm	This work
Au	6.2	TiO ₂ NWA	rutile	0.18	600 nm	This work

Table S1. IPCE for water splitting on Au plasmonic photocatalyst electrodes

Reference

- H. Li, S. Wang, M. Wang, Y. Gao, J. Tang, S. Zhao, H. Chi, P. Zhang, J. Qu, F. Fan and C. Li, Enhancement of Plasmon-Induced Photoelectrocatalytic Water Oxidation over Au/TiO₂ with Lithium Intercalation, *Angew. Chem. Int. Ed.*, 2022, **61**, e202204272.
- P. A. DeSario, J. J. Pietron, D. E. DeVantier, T. H. Brintlinger, R. M. Stroud and D. R. Rolison, Plasmonic enhancement of visible-light water splitting with Au–TiO₂ composite aerogels, *Nanoscale*, 2013, 5, 8079-8083.
- 22. T. Onishi, M. Teranishi, S. Naya, M. Fujishima and H. Tada, Electrocatalytic effect on the photon-to-current conversion efficiency of gold-nanoparticle-loaded titanium(IV) oxide plasmonic electrode for water oxidation, *J. Phys. Chem. C*, 2020, **124**, 6103-6109.
- S.-F. Hung, F.-X. Xiao, Y.-Y. Hsu, N.-T. Suen, H.-B. Yang, H. M. Chen and B. Liu, Iridium oxide-assisted plasmon-induced hot carriers: Improvement on kinetics and thermodynamics of hot carriers, *Adv. Energy Mater.*, 2016, 6, 1501339.

	$R_{ m s}$ / Ω	CPE α	CPE C_0	$R_{ m ct}$ / Ω
DP-Au/A-TiO ₂ NPLA	4.9 × 10	7.5×10^{-1}	8.1 × 10 ⁻⁵	1.3×10^{3}
DP-Au/R-TiO ₂ NWA	4.4×10	8.5×10^{-1}	$5.0 imes 10^{-6}$	9.0×10^{3}
CR-Au/A-TiO ₂ NPLA	9.3 × 10	9.3 × 10 ⁻¹	4.5×10^{-5}	2.4×10^{5}

Table S2. EIS parameters for Au/TiO_2 plasmonic Electrodes $\ensuremath{^a}$

^a Constant phase element (CPE) is expressed by the equation $ZCPE = 1/C_0 (j\omega)^{\alpha}$.

Model	<i>d</i> / nm	λ / nm	Monitor plane	Maximum E/E_0	Maximum $ E ^2 / E_0 ^2$
HS-Au/A-TiO ₂	7.9	702	XZ	49.6	2.5× 10 ³
			xy	59.9	3.6× 10 ³
t-Oh-Au/A-TiO ₂	7.6	617	XZ	91.6	8.4× 10 ³
			xy	192	3.7×10^{4}
		637	XZ	254	6.5×10^{4}
			xy	292	8.5×10^{4}
		650	XZ	331	1.1× 10 ⁵
			xy	333	1.1× 10 ⁵
		670	XZ	103	1.1×10^{4}
			xy	336	1.1× 10 ⁵
t-Oh-Au/R-TiO ₂	6.2	672	XZ	340	1.2×10^{5}
			xy	340	1.2×10^{5}
		706	XZ	116	1.4×10^4
			xy	383	1.5× 10 ⁵

Table S3. Maximum enhancement factors $(|E|^2/|E_0|^2)$ calculated for HS-Au/A-TiO₂, t-Oh-Au/A-TiO₂, and t-Oh-Au/R-TiO₂ at the LSPR peak wavelengths by the 3D-FDTD method

Fig. S1. (a) TEM image and Au particle size distribution (a) and HR-TEM image (b) of CR-Au/A-TiO₂ NPLA.

Fig. S2. HR-TEM image (a) and Au particle size distribution (b) of DP-Au/R-TiO₂ NWA.

Fig. S3. Contact angle of Au NP on the A-TiO₂(001) surface.

Fig. S4. Au4f XP spectra of DP-Au/A-TiO₂ NPLA, DP-Au/R-TiO₂ NWA, and CR-Au/A-TiO₂ NPLA.

Fig. S5. (a) FDTD calculation models for CR-Au/A-TiO₂ (HS-Au/A-TiO₂) and DP-Au/A-TiO₂ NPLA (t-Oh-Au/A-TiO₂) (b) FDTD-simulated absorption spectra of the HS-Au/A-TiO₂ (blue) and t-Oh-Au/A-TiO₂ (red).

*d*_{Au} = 7.6 nm

Fig. S6. Local electric field distribution for t-Oh-Au(d_{Au} = 7.6 nm)/A-TiO₂ calculated by the 3D-FDTD method.

Fig. S7. Photocurrent (*J*)-potential (*E*) curves of DP-Au/A-TiO₂ NPLA and DP-Au/R-TiO₂ NWA electrodes. The current density in each system was calculated using the specific surface area of the nanostructured TiO₂ determined by the BET method.

Fig. S8. Local electric fields for t-Oh-Au/R-TiO₂ (a) calculated by the 3D-FDTD method, and the local electric field distributions (b).