Supplementary Information

TUNEABLE C3 PRODUCT SELECTIVITY OF GLYCEROL ELECTROOXIDATION ON CUBIC AND DENDRITIC Pt NANOCATALYSTS

Irina Terekhina^a, Mats Johnsson^{a*}

- ^a Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
- * Corresponding author

E-mail address: mats.johnsson@mmk.su.se

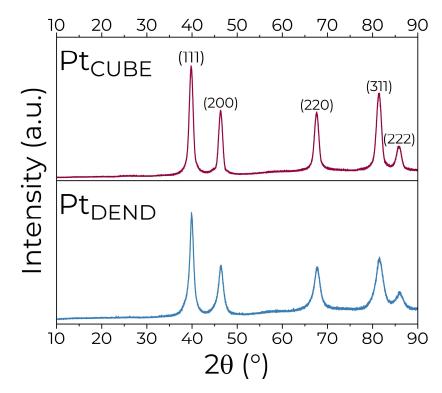
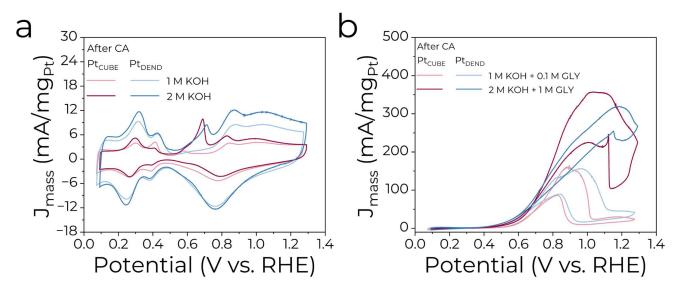
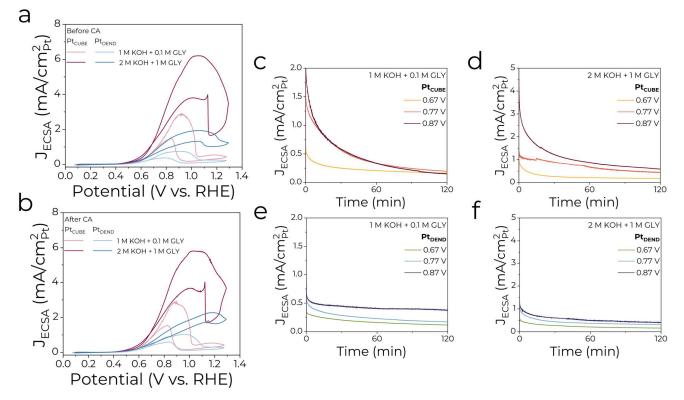




Fig. S1. PXRD diffractograms of Pt nanocatalysts.

Fig. S2. CV profiles of Pt nanocatalysts in (a) 1 M KOH and 2 M KOH and (b) 1 M KOH + 0.1 M GLY and 2 M KOH + 1 M GLY solutions after potentiostatic measurements. The currents are normalised by the absolute Pt mass loading.

Fig. S3. CV profiles of Pt nanocatalysts in 1 M KOH + 0.1 M GLY and 2 M KOH + 1 M GLY solutions (a) before and (b) after the electrolysis. Potentiostatic electrolysis curves at 0.67, 0.77 and 0.87 V for (c–d) Pt_{CUBE} and (e–f) Pt_{DEND} in 1 M KOH + 0.1 M GLY and 2 M KOH + 1 M GLY solutions. The currents are normalised by the aECSA.

Product Analysis

The glycerol conversion, product selectivity, carbon balance and total Faradaic efficiency were calculated using **Eqs S1–4**. The results are presented in **Tables S1–2**.

Glycerol conversion:

$$\eta_{glycerol} = \frac{C_{0,glycerol} - C_{glycerol}}{C_{0,glycerol}} \cdot 100\%$$
(S1)

where C_{0,glycerol} and C_{glycerol} are the initial and final glycerol concentrations, mmol/l.

Product selectivity:

$$S_{\text{product}} = \frac{C_{\text{product}}}{\sum C_{\text{all products}}} \cdot 100\%$$
(S2)

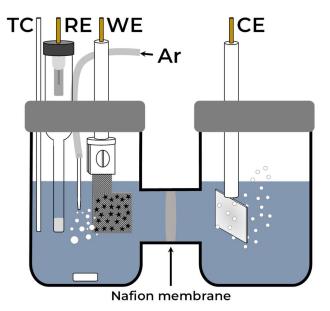
where C_{product} and C_{all products} are the individual product and total products' concentrations, mmol/l.

Carbon balance:

$$CB = \frac{C_{glycerol} + C_{C3} + \frac{2}{3} \cdot C_{C2} + \frac{1}{3} \cdot C_{C1}}{C_{0,glycerol}} \cdot 100\%$$
(S3)

where C_{C3} is the concentration of the three-carbon products (dihydroxyacetone, glycerate, lactate, tartronate); C_{C2} is the concentration of the two-carbon products (glycolate, oxalate, glyoxylate); C_{C1} is the concentration of the one-carbon product (formate). All the concentrations are in mmol/l.

Faradaic efficiency:


Calculations of the total Faradaic efficiency (FE) of the GEOR are based on the following half-reactions:

Dihydroxyacetone:	$CH_2OH-CHOH-CH_2OH + 2OH^- \rightarrow CH_2OH-CO-CH_2OH + 2H_2O + 2e^{-1}$,—
Glycerate:	$CH_2OH-CHOH-CH_2OH + 5OH^- \rightarrow CH_2OH-CHOH-COO^- + 4H_2O + 4H_$	4e⁻
Lactate:	$CH_2OH\text{-}CHOH\text{-}CH_2OH\text{+} 3OH^- \to CH_3\text{-}CHOH\text{-}COO^- + 3H_2O + 2e^-$	
Tartronate:	$CH_2OH-CHOH-CH_2OH + 10OH^- \rightarrow -OOC-CHOH-COO^- + 8H_2O + 8H_2$	3e⁻
Glycolate:	$CH_2OH-CHOH-CH_2OH + 13/2OH^- \rightarrow 3/2CH_2OH-COO^- + 5H_2O + 5H$	e−
Oxalate:	$CH_2OH-CHOH-CH_2OH + 14OH^- \rightarrow 3/2^-OOC-COO^- + 11H_2O + 11e^{-1}$, _
Glyoxylate:	$CH_2OH-CHOH-CH_2OH + 19/2OH^- \rightarrow 3/2HCO-COO- + 8H_2O + 8e^-$	
Formate:	$CH_2OH\text{-}CHOH\text{-}CH_2OH + 11OH^- \rightarrow 3HCOO^- + 8H_2O + 8e^-$	
$FE = \frac{\sum z \cdot C_{product}}{Q} \cdot V \cdot$	F·100%	(S4)

where z is the number of electrons transferred, V is the anolyte volume, 0.015 L; F is the Faraday constant, 96485 C/mol, and Q is the total charge passed during electrolysis, C.

The carbon balance and Faradaic efficiency were not normalised by the electrolyte evaporation and concentration effects during the electrolysis.

High values above 100% could be due to (i) concentration effects as a result of the electrolyte evaporation, (ii) heterogeneous GEOR on Pt nanocatalysts in addition to the electrochemical oxidation, and (iii) uncertainties in HPLC analysis.

Scheme S1. Electrochemical divided cell. WE—working electrode, RE—reference electrode, CE—counter electrode, TC—thermocouple, Ar—argon gas.

Table S1. GEOR products concentrations, carbon balance and total Faradaic efficiency of GEOR for Pt NCs in a 1 M KOH + 0.1 M GLY electrolyte at different potentials.

Catalvat	Detential ()()	Concentration (mM)									FE
Catalyst	Potential (V)	DHA	GLE	LACT	TART	GLO	OXA GLYOXA		FORM	%	
	0.67	0.0	7.7	7.5	1.0	1.1	0.4	0.4	0.7	103.7	83.3
Pt _{cube}	0.77	0.0	12.7	9.4	2.1	2.6	1.9	0.7	1.7	102.6	77.4
Ptc	0.87	0.0	13.3	7.2	2.9	3.1	3.3	0.4	2.9	97.8	96.9
		101.4	85.9								
	0.67	0.0	9.1	6.2	1.8	1.6	1.3	0.2	1.1	104.9	77.1
Pt _{DEND}	0.77	0.0	7.2	4.0	3.1	2.5	4.0	0.0	2.1	98.7	67.6
Pt ⁰	0.87	0.0	12.8	4.8	6.6	5.5	9.6	0.2	4.6	103.8	82.6
				A	verage					102.5	75.7

Table S2. GEOR products concentrations, carbon balance and total Faradaic efficiency of GEOR for Pt NCs in a 2 M KOH + 1 M GLY electrolyte at different potentials.

Catalyst	Detential ()()	Concentration (mM)									FE
Catalyst	Potential (V)	DHA	DHA GLE LACT TART GLO OXA GLYOXA		FORM	%					
	0.67	0.0	6.9	21.9	0.6	0.4	0.0	1.5	0.9	99.9	109.3
Pt _{cube}	0.77	0.0	25.6	36.9	2.7	4.1	0.4	5.7	2.1	103.9	109.5
Pt _c	0.87	0.0	38.7	35.7	5.8	5.7	3.4	5.0	3.6	105.8	107.7
			103.2	108.8							
	0.67	0.0	19.9	28.1	1.4	1.5	0.0	3.9	1.9	104.2	127.2
Pt _{DEND}	0.77	0.0	31.1	29.9	4.1	4.2	4.0	3.6	3.3	105.1	114.0
Pt ₀	0.87	1.9	44.5	31.5	5.9	6.3	2.2	5.5	5.0	105.6	105.4
				Α	verage					104.9	115.5

Ref.	Catalyst	т	v	Electrolyte	E _f	J _{mass} / J _{ECSA}	E _{electrolysi} s	t	Sd.prod.								
												1 KOH + 0.1 glycerol	0.92	178 mA/mg _{Pt} 2.9 mA/cm ² _{Pt}	0.67 vs RHE -0.4 vs SCE 0.77 vs RHE -0.3 vs SCE 0.87 vs		glycerate (41%) lactate (40%) glycerate (41%) lactate (30%)
	Pt nanocubes						RHE -0.2 vs SCE		glycerate (40%) lactate (22%)								
	FT Hanocubes						0.67 vs RHE -0.418 vs SCE		lactate (68%) glycerate (21%)								
				2 KOH + 1 glycerol	1.05	397 mA/mg _{Pt} 6.2 mA/cm ² _{Pt}	0.77 vs RHE -0.318 vs SCE	120	lactate (48%) glycerate (33%)								
Present work		20	50				0.87 vs RHE -0.218 vs SCE		glycerate (40%) lactate (36%)								
Preser	Pt dendritic nanoparticles	20	00	1 KOH + 0.1 glycerol	0.91	93 mA/mg _{Pt} 0.7 mA/cm ² _{Pt}	0.67 vs RHE -0.4 vs SCE		glycerate (43%) lactate (29%)								
							0.77 vs RHE -0.3 vs SCE		glycerate (32%) lactate/oxalate (17%)								
							0.87 vs RHE -0.2 vs SCE		glycerate (29%) oxalate (22%)								
					1.05	237 mA/mg _{Pt} 1.9 mA/cm ² _{Pt}	0.67 vs RHE -0.418 vs SCE		lactate (49%) glycerate (35%)								
				2 KOH + 1 glycerol			0.77 vs RHE -0.318 vs SCE		glycerate (39%) lactate (37%)								
							0.87 vs RHE -0.218 vs SCE		glycerate (43%) lactate (31%)								
					~(-0.13) vs SCE**		-0.4 vs SCE		glyceraldehyde (40%) glycolate (30%)								
[18]	Pt@Pd nanocubes	RT⁺	50	0.5 KOH + 0.5 glycerol		3.2 mA/cm² _{Pd}	-0.1 vs SCE	120	glyceraldehyde (40%) glycolate (35%)								
							0.2 vs SCE		glyceraldehyde (35%) glycolate (40%)								
	Pt catalyst with hierarchical pores		10		~0.88	~310 mA/mg _{Pt} 6.9 mA/cm ² _{Pt}			glycerate (59%) formate (18%)								
[20]	Pt catalyst with cubic pores	60		1 NaOH + 0.1 glycerol	~0.86	~620 mA/mg _{Pt} 3.3 mA/cm ² _{Pt}	0.69	60	glycerate (58%) formate/oxalate (14%)								
	Pt catalyst with linear pores				~0.80	~255 mA/mg _{Pt} 5.6 mA/cm ² _{Pt}			glycerate (60%) formate (17%)								
[22]	Pt nanoflowers	RT [*]	50	1 KOH + 1 glycerol	~(-0.15) vs SCE	~1250 mA/mg _{Pt}	-0.25 vs	60	N/A								
[22]	Pt₃Ru₁ nanoflowers	IT I	50		~(-0.18) vs SCE	∼1750 mA/mg _{Pt}	SCE	ου									

Table S3. Comparison of recently reported Pt-based catalysts for the GEOR.

S6

	Pt₁Ru₁ nanoflowers				~(-0.17) vs SCE	~2000 mA/mg _{Pt}																				
	Pt₁Ru₃ nanoflowers				~(-0.16) vs SCE	2412 mA/mg _{Pt}																				
	Pt₁Ru₅ nanoflowers				~(-0.2) vs SCE	∼1100 mA/mg _{Pt}																				
				0.1 KOH + 0.1 glycerol		191 mA/mg _{Pt} 0.3 mA/cm ² _{Pt}			glycerate (59%) lactate (17%)																	
	Pt/C			0.5 KOH + 0.1 glycerol	1.02 ^{**} (RT⁺)			N/A	glycerate (58%) lactate (23%)																	
[27]		60	50	1 KOH + 0.1 glycerol			1.0		glycerate (49%) lactate (37%)																	
		00	50	0.1 KOH + 0.1 glycerol	1.01 ^{**} (RT [*])	200	1.0		glycerate (62%) lactate (13%)																	
	PtCu/C			0.5 KOH + 0.1 glycerol		mA/mg _{Pt} 0.44		N/A	glycerate (40%) lactate (23%)																	
				1 KOH + 0.1 glycerol		mA/cm ² _{Pt}			glycerate (45%) lactate (19%)																	
							0.45		lactate (50%) glycerate (41%)																	
	Pt/C						0.6		lactate (31%) glycerate (35%)																	
	FUC	RT					0.9		lactate (23%) glycerate (50%)																	
							1.05		lactate (19%) glycerate (50%)																	
	Pt _{90%surf} Au/C						0.45		lactate (69%) glycerate (24%)																	
							0.6		lactate (54%) glycerate (36%)																	
							0.9		lactate (22%) glycerate (53%)																	
																										1.05
	Pt _{64%surf} Au/C						0.45		lactate (60%) glycerate (25%)																	
[28]			50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	1 KOH + 0.5 glycerol	N/A	N/A	0.6	720
	04 /JSult														0.9		lactate (25%) glycerate (49%)									
							1.05		lactate (31%) glycerate (41%)																	
							0.45		lactate (61%) glycerate (22%)																	
	Pt _{29%surf} Au/C						0.6		lactate (55%) glycerate (32%)																	
	207/0001						0.9		lactate (43%) glycerate (37%)																	
							1.05		lactate (29%) glycerate (37%)																	
							0.45		lactate (73%) glycerate (18%)																	
	Pt _{15%surf} Au/C						0.6		lactate (61%) glycerate (27%)																	
							0.9		lactate (41%) glycerate (42%)																	

							1.05		glycolate (33%) lactate (27%)
	Pt/GNS					0.3 mA/cm² _{Pt}	-0.4 vs SCE		glycolate (36%) glyceraldehyde (32%)
					-0.03 vs SCE ^{**}		-0.1 vs SCE		glycolate (55%) glycerate (15%)
							0.2 vs SCE		glycolate (65%) glycerate (13%)
						0.4 mA/cm ² Pt	-0.4 vs SCE		glycolate (42%) glycerate (36%)
	PtNi/GNS				-0.13 vs SCE**		-0.1 vs SCE	120	glycerate (48%) glycolate (33%)
							0.2 vs SCE		glyceraldehyde (30%) glycerate (28%)
	PtRu/GNS	RT*			-0.1 vs SCE ^{**}	0.4 mA/cm² _{Pt}	-0.4 vs SCE		glyceraldehyde (31%) glycerate (31%)
							-0.1 vs SCE		glycerate (40%) glycolate (31%)
[29]			50				0.2 vs SCE		glycolate (48%) glycerate (34%)
[29]	PtRh/GNS		50	0.5 KOH + 0.5 glycerol	-0.16 vs SCE*	4.5 mA/cm ² Pt	-0.4 vs SCE		glycolate (41%) oxalate (28%)
							-0.1 vs SCE		glycolate (40%) glyceraldehyde/glycerate (19%)
							0.2 vs SCE		glycolate (52%) glyceraldehyde/glycerate (14%)
							-0.4 vs SCE		glycolate (54%) glycerate (26%)
	PtRuNi/GNS				-0.06 vs SCE ^{**}	0.4 mA/cm² _{Pt}	-0.1 vs SCE		glyceraldehyde/glycerate (33%)
	PtRhNi/GNS						0.2 vs SCE		glyceraldehyde (39%) glycerate (15%)
							-0.4 vs SCE		oxalate (38%) glyceraldehyde (31%)
					-0.15 vs SCE ^{**}	5.6 mA/cm ² Pt	-0.1 vs SCE		glyceraldehyde (32%) oxalate (26%)
							0.2 vs SCE		glycolate (42%) glyceraldehyde (19%)

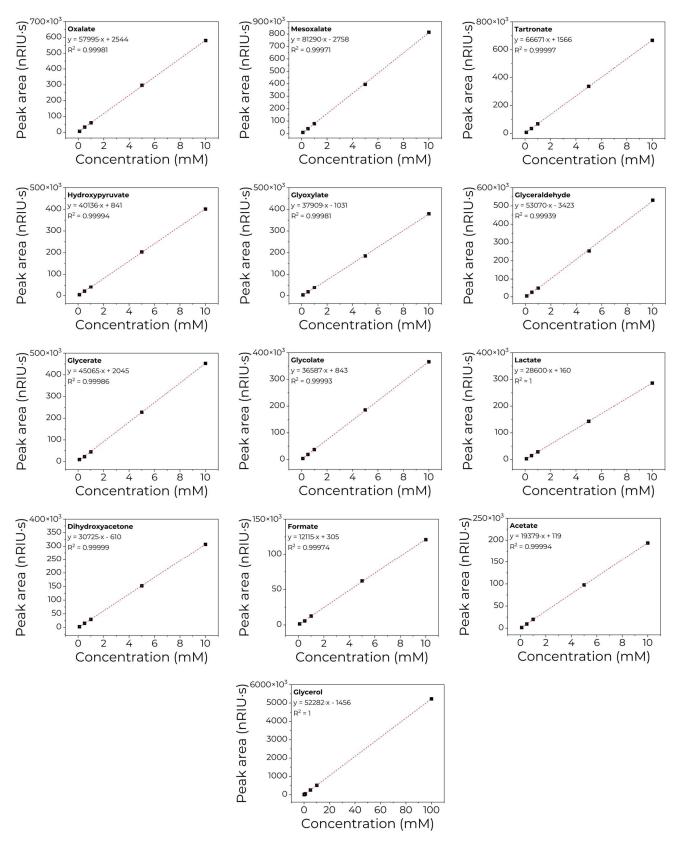
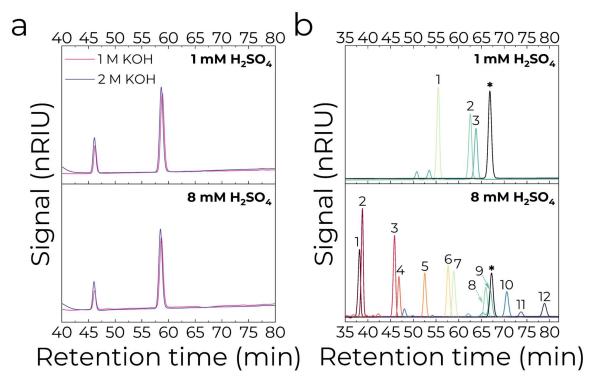
*room temperature, not specified in °C **in 0.1 M KOH + 1 M glycerol electrolyte

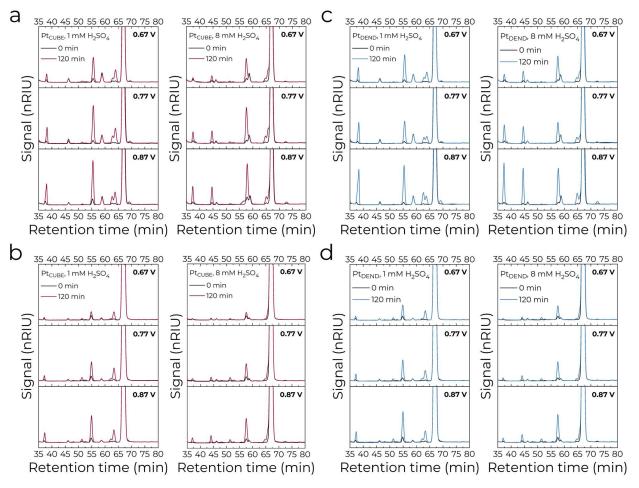
T—temperature, °C; v—scan rate, mV/s; Electrolyte—electrolyte composition for the potentiostatic measurements, mol/l; E_f—forward peak potential, V vs RHE if not stated otherwise; J_{mass}—forward peak mass activity, mA/mg_{catalyst}; J_{ECSA}—forward peak specific activity, mA/cm²_{catalyst}; E_{electrolysis}— applied potential, V; t—electrolysis time, min; S_{d,prod}.—selectivity of the two most dominant products, % (for some references, no exact numerical selectivity values were reported, so they were estimated from the reported GEOR products selectivity plots).

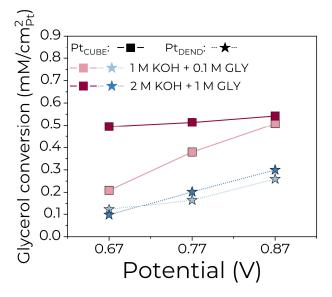
Catalyst supports: C—carbon; GNS—graphene nanosheets.

Reference electrodes: RHE—reversible hydrogen electrode; SCE—saturated calomel electrode (Hg/Hg₂Cl₂, sat. KCl).

All quantitative analyses of the GEOR products were performed using High-Pressure Liquid Chromatography (HPLC).


Fig. S4. Calibration curves of standard solutions of glycerol and possible GEOR products.


Fig. S5. HPLC chromatograms of a) 1 M and 2 M KOH solutions and b) 10 mM calibration solutions registered using 1 mM and 8 mM H₂SO₄ mobile phases.

(b, 1 mM H₂SO₄): 1—glycerate, 2—glycolate, 3—lactate, star—glycerol.

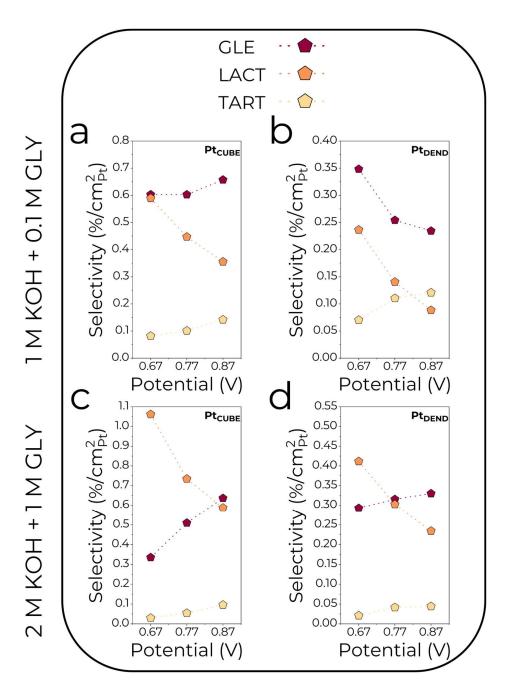

(b, 8 mM H₂SO₄): 1—oxalate, 2—mesoxalate, 3—tartronate, 4—hydroxypyruvate, 5 glyoxylate, 6—glyceraldehyde, 7—glycerate, 8—glycolate, 9—lactate, star—glycerol, 10—dihydroxyacetone, 11—formate, 12—acetate.

Fig. S6. HPLC chromatograms of samples collected from (a, c) 1 M KOH + 0.1 M GLY and (b, d) 2 M KOH + 1 M GLY electrolytes at different potentials for (a–b) Pt_{CUBE} and (c–d) Pt_{DEND} NPs using 1 mM H₂SO₄ and 8 mM H₂SO₄ as a mobile phase.

Fig. S7. Glycerol conversion for Pt_{CUBE} and Pt_{DEND} in 1 M KOH + 0.1 M GLY and 2 M KOH + 1 M GLY electrolytes. The converted glycerol concentration is normalised by the aECSA.

Fig. S8. Individual C3 products selectivity normalised by the aECSA as a function of the applied potential in (a–b) 1 M KOH + 0.1 M GLY and (c–d) 2 M KOH + 1 M GLY electrolytes. Note that all figures have different y-axis scales.