Supporting information

Selenium-Enriched Hollow NiCo2O4/NiO Heterostructured Nanocages as

Efficient Electrocatalyst for Oxygen Evolution Reaction

Vaibhav Namdev Kale, T. Maiyalagan*

Electrochemical Energy Laboratory, Department of Chemistry, SRM Institute of Science and

Technology, Kattankulathur, Tamilnadu, India.

*E-mail address- maiyalagan@gmail.com & maiyalat@srmist.edu.in

EXPERIMENTAL SECTION

Material Characterizations

In this study, the morphological features, nanostructures and elemental analysis were analyzed by scanning electron microscope (SEM, Thermoscientific Apreo S) and high-resolution transmission electron microscope (HR-TEM) and TEM (HRTEM, JEOL Japan, JEM-2100 Plus instrument)) including the energy dispersive spectrometer (EDS) mapping analysis. The synthesized materials underwent powder X-ray diffraction (XRD) (X'pert pro diffractometer, PANalytical) for the microstructural analysis and were further subjected to XPS analysis utilizing system: the Shimadzu ESCA 3400 instrument (Physical Electronics system; monochromatic beam 1486.6 eV) with an AlKα source operated at 15 kV, for identification of the elements spectra that confirms of the elements existed in the prepared sample and used to study surface properties.

Electrochemical Measurements

All electrochemical measurements were conducted by using a potentiostat (AUTOLAB, PGSTAT204). To run all the electrochemical experiments the three-electrode setup was employed and the setup consisted of Hg/HgO electrode, platinum wire and glassy carbon (GC) electrode used as a reference, counter and the working electrode, respectively, under N_2 saturated 1.0 M KOH electrolyte. LSV (Linear sweep voltammetry) measurements were performed at the operated potential window of $1.02-1.82$ V (vs. RHE) and achieved at a scan rate of 5 mV/s. The EIS (electrochemical impedance spectroscopy) analysis was used for the investigation of the OER process kinetics in the frequency range of 100 kHz–0.1 Hz. The Nova 2.1 software was used for electrochemical impedance data fitting. All the voltages were converted to vs. RHE according to the following Eq. $E_{(RHE)} = E_{(Hg/HgO)} + 0.059$ pH + E^0 , where $E^0 = 0.098$ V) [S1]. A

chronoamperometry test was conducted to inspect the electrochemical stability towards OER at a fixed voltage of 1.52 V vs. RHE.

CALCULATION METHODS

Calculation of ECSA

The following equation is used to calculate the electrochemically active surface area (ECSA), which is proportional to the electrochemical double-layer capacitance $(C_{\rm d}$). The equation is as follows:

$$
ECSA = \frac{C_{dl}}{C_s} [S2]
$$

Where C_s is a constant specific electrochemical capacitance of 0.04 mF cm 2 . By plotting the graph of capacitive current density which was measured using cyclic voltammetry (CV) as a function of scan rate, the C_{dl} values of the catalyst were determined from the slope of linear fitted curves [S1].

Calculation of Roughness Factor (RF)

The electrochemical double-layer capacitance (C_{d}) measurements are used to calculate the roughness factor (RF) of the as-synthesized catalysts using the following equation:

$$
RF = \frac{ECSA}{Geometric\ area\ of\ the\ electrode} \quad [S3]
$$

Mass activity

The mass activities of the electrocatalysts were calculated by dividing the delivered current density (j) with the catalyst mass loading (m = 0.245 mg cm⁻²) at an overpotential (η) of 320 mV.

$$
Mass activity = \frac{j}{m} [S4]
$$

Figure S1. (a, b) Energy dispersive spectroscopy (EDS) spectrum and elemental composition of 5 wt\% Se-NiCo₂O₄/NiO.

Figure S2. TEM mapping image of 5 wt% Se-NiCo₂O₄/NiO.

Figure S3. XPS survey spectrum of 5 wt% Se-NiCo₂O₄/NiO.

Figure S4. Raman analysis of 5 wt% Se-NiCo₂O₄/NiO before and after electrochemical stability.

Figure S5. (a, b) Energy dispersive spectroscopy (EDS) spectrum and elemental composition of 5 wt% Se-NiCo₂O₄/NiO after OER stability test.

Element	Peak	B.E. (eV)	FWHM
Ni 2p	$Ni^{2+} (2p_{3/2})$	854.4	1.53
	$Ni^{2+}(2p_{1/2})$	872.8	3.30
	Sat.	861.8	4.85
	$Ni^{3+}(2p_{3/2})$	856.2	2.89
	$Ni^{3+}(2p_{1/2})$	876.1	3.80
	Sat.	880.6	4.0
Co2p	$Co^{3+} (2p_{3/2})$	780.2	2.47
	$Co^{3+}(2p_{1/2})$	795.2	2.59
	Sat.	787.3	4.90
	$Co^{2+}(2p_{3/2})$	782.4	3.85
	$Co^{2+}(2p_{1/2})$	797.6	3.69
	Sat.	803.4	4.70
O _{1s}	O ₁	530.1	1.49
	O2	531.5	1.85
	O ₃	532.6	2.42
Se 3d	$3d_{5/2}$	53.7	2.45
	$3d_{3/2}$	55.9	1.95
	$Se = O$	60.6	3.46

Table S1. Various parameters were obtained from the deconvoluted XPS spectrum of 5 wt% Se-NiCo₂O₄/NiO.

B.E= Binding Energy FWHM= Full Width Half Maxima

Table S2. Comparison of the electrochemical OER activity of the as-prepared NiCo-LDH, 5 wt% Se-NiCo-LDH, 10 wt% Se-NiCo-LDH, NiCo₂O₄/NiO, 5 wt% Se- NiCo₂O₄/NiO and 10 wt% Se-NiCo₂O₄/NiO electrocatalysts.

Catalyst	E_{onset} (V)	η_{onset} (mV)	E_{OER} (V) at 10 mA cm ² at 10 mA cm ²	η (mV)	\dot{j} at 1.82 V (mA cm ²)
NiCo-LDH	1.489	259	1.569	338	56.41
5 wt\% Se-NiCo-LDH	1.454	224	1.536	306	68.11
10 wt% Se-NiCo-LDH	1.465	235	1.541	311	63.19
NiCo ₂ O ₄ /NiO	1.475	245	1.553	323	71.48
5 wt% Se-NiCo ₂ O ₄ /NiO	1.440	210	1.518	288	86.32
10 wt\% Se-NiCo ₂ O ₄ /NiO	1.452	222	1.531	301	73.46

 E_{onset} = Onset potential E_{OER} = OER potential j = Current density

 η_{onset} = Onset overpotential η = Overpotential

Table S3. Corresponding values of the Tafel Slope, Solution Resistance and Charge-Transfer Resistance of of the as-prepared NiCo-LDH, 5 wt% Se-NiCo-LDH, 10 wt% Se-NiCo-LDH, $NiCo₂O₄/NiO$, 5 wt% Se- NiCo₂O₄/NiO and 10 wt% Se- NiCo₂O₄/NiO electrocatalysts.

 R_s =Solution resistance R_{cf} = Charge transfer resistance

Table S4. Electrochemical performance of the as-prepared NiCo-LDH, 5 wt% Se-NiCo-LDH, 10 wt% Se-NiCo-LDH, NiCo₂O₄/NiO, 5 wt% Se- NiCo₂O₄/NiO and 10 wt% Se- NiCo₂O₄/NiO electrocatalysts.

Catalyst	$C_{\rm dl}$ (mF cm ²)	ECSA $\text{(cm}^2\text{)}$	Mass Activity (A g^{-1}) $@1.55$ V vs. RHE	R_F
NiCo-LDH	0.183	4.57	28.02	23.31
5 wt\% Se-NiCo-LDH	0.344	8.6	53.28	43.87
10 wt% Se-NiCo-LDH	0.336	8.4	48.24	42.85
NiCo ₂ O ₄ /NiO	0.354	8.85	28.57	45.1
5 wt% Se-NiCo ₂ O ₄ /NiO	1.7	42.5	90.36	216.8
10 wt\% Se-NiCo ₂ O ₄ /NiO	0.587	14.6	64.32	74.4

Table S5. Comparison of the OER performance of some previously reported electrocatalysts in an alkaline electrolyte with the 5 wt% Se-NiCo₂O₄/NiO electrocatalysts developed in this study.

GCE= Glassy carbon electrode CFP= carbon fiber paper NF= Nickel foam

Table S6. The elemental composition of the hollowed 5 wt% Se-NiCo2O4/NiO nanocages before and after stability testing through EDS.

References

- S1. J. Yan, L. Kong, Y. Ji, J. White, Y. Li, J. Zhang, P. An, S. Liu, S. T. Lee and T. Ma, Single atom tungsten doped ultrathin α -Ni $(OH)_2$ for enhanced electrocatalytic water oxidation, *Nat. Commun.*, 2019, **10**, 2149.
- S2. Y. Chen, H. Wu, N. Tang, Y. Zhang and Y. Wang, NiCo₂S₄ octahedral configuration doped by Mn, Zn and Cu for oxygen evolution reaction, *ChemComm*, 2024.
- S3. S. Shit, S. Chhetri, W. Jang, N. C. Murmu, H. Koo, P. Samanta, T. Kuila, Cobalt sulfide/nickel sulfide heterostructure directly grown on nickel foam: an efficient and durable electrocatalyst for overall water splitting application, *ACS Appl. Mater. Interface*, 2018, **10**, 27712-27722.
- S4. J. Zhou, Z. Han, X. Wang, H. Gai, Z. Chen, T. Guo, X. Hou, L. Xu, X. Hu, M. Huang and S. V. Levchenko, Discovery of quantitative electronic structure‐OER activity relationship in metal‐organic framework electrocatalysts using an integrated theoretical‐experimental approach, *Adv. Funct. Mater*., 2021, **31**, 2102066.
- S5. Y. Wang, Z. Zhang, X. Liu, F. Ding, P. Zou, X. Wang, Q. Zhao and H. Rao, MOF-derived $NiO/NiCo₂O₄$ and $NiO/NiCo₂O₄$ -rGO as highly efficient and stable electrocatalysts for oxygen evolution reaction, *ACS Sustain. Chem. Eng.*, 2018, **6**, 12511-12521.
- **S**6. Z. Zhang, X. Liang, J. Li, J. Qian, Y. Liu, S. Yang, Y. Wang, D. Gao and D. Xue, Interfacial engineering of $NiO/NiCo₂O₄$ porous nanofibers as efficient bifunctional catalysts for rechargeable zinc–air batteries, *ACS Appl. Mater. Interfaces*, 2020, **12**, 21661-21669.
- S7. L. Cao, J. Cai, W. Deng, , Y. Tan and Q. Xie, $NiCoO₂(QCeO₂)$ nanoboxes for ultrasensitive electrochemical immunosensing based on the oxygen evolution reaction in a neutral

medium: Application for interleukin-6 detection, *Anal. Chem.*, 2020, **92**, 16267-16273.

- S8. C. Mahala and M. Basu, Nanosheets of NiCo₂O₄/NiO as efficient and stable electrocatalyst for oxygen evolution reaction, *ACS Omega*, 2017, **2**, 7559-7567.
- S9. Y. Yuan, L. Sun, Y. Li, W. Zhan, X. Wang and X. Han, Synergistic modulation of active sites and charge transport: N/S Co-doped C encapsulated $NiCo₂O₄/NiO$ hollow microrods for boosting oxygen evolution catalysis, *Inorg. Chem.*, 2020, **59**, 4080-4089.
- S10. M. Yang, W. Lu, R. Jin, X. C. Liu, S. Song and Y. Xing, Superior oxygen evolution reaction performance of $Co₃O₄/NiCo₂O₄/Ni$ foam composite with hierarchical structure, *ACS Sustain. Chem. Eng.*, 2019, **7**, 12214-12221.
- S11. H. Hu, B. Guan, B. Xia and X. W. Lou, Designed formation of $Co_3O_4/NiCo_2O_4$ doubleshelled nanocages with enhanced pseudocapacitive and electrocatalytic properties, *J. Am. Chem. Soc.*, 2015, **137**, 5590-5595.
- S12. J. Yin, P. Zhou, L. An, L. Huang, C. Shao, J. Wang, H. Liu and P. Xi, Self-supported nanoporous $NiCo₂O₄$ nanowires with cobalt–nickel layered oxide nanosheets for overall water splitting, *Nanoscale*, 2016, **8**, 1390-1400.
- S13. J. Yin, Y. Li, F. Lv, Q. Fan, Y. Q. Zhao, Q. Zhang, W. Wang, F. Cheng, P. Xi and S. Guo, NiO/CoN porous nanowires as efficient bifunctional catalysts for Zn–air batteries, *ACS Nano*, 2017, **11**, 2275-2283.
- S14. J. Zhao, F. W. Chen, X. Y. Zhao, X. J. Wang, Y. P. Li and F. T. Li, Self-Composition of Hierarchical Core–Shell-Structured $NiCo₂O₄(Q)NiCo₂O₄$ Microspheres with Oxygen Vacancies for Efficient Oxygen Evolution Electrocatalysis, *Energy Fuels*, 2023, **37**, 18111– 18119.

S15. A. Cetin and E. N. Esenturk, Hierarchical nanowire and nanoplate-assembled $NiCo₂O₄$ NiO biphasic microspheres as effective electrocatalysts for oxygen evolution reaction, *Mater. Today Chem.*, 2019, **14**, 100215.