Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information

Catalytic NH₃ Oxidation Affected by the Nanometric Roughness of the Platinum Overlayer

Masato Machida,^{*,#,I} Nayu Yamasaki,[†] Tomoya Miyoshi,[†] Hiroki Kusaba,[†] Tetsuya Sato,[‡] Keisuke Awaya,[#] Hiroshi Yoshida,[#] Junya Ohyama,^{#,I} Teppei Ohori,[§] Kohei Oka,[§] Kenji Fujii,[§] Naoya Ishikawa[§]

 [#] Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto 860-8555, Japan
¹ Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto 860-8555, Japan

 [†] Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto, 860-8555, Japan
[‡] Technical Division, Faculty of Engineering, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto, 860-8555, Japan

[§] Isuzu Advanced Engineering Center, Ltd, 8 Tsuchidana, Fujisawa, 252-0881, Japan

* E-mail: machida@kumamoto-u.ac.jp

Figure S1. Schematic of the pulsed AP deposition of Pt on a Fe–Cr–Al foil. This figure is reproduced from a reference.¹

Figure S2. A schematic illustration of catalytic reaction experiments and gas analysis. This figure is reproduced from references.^{2, 3}

The catalytic NH₃ oxidation was conducted in a flow reactor comprising a gas-supplying system equipped with mass flow controllers, a water-supplying pump, a quartz tube reactor (6 mm in outer diameter and 4 mm in inner diameter), a water-cooled infrared image furnace (RHL-E25P, Ulvac Riko, Japan) and a cooling trap. A strip foil ($3 \times 30 \text{ mm}^2$) of an as-prepared film catalyst (coated on one side only) was set in a catalytic activity test tube. A simulated gas mixture comprising 300 ppm NH₃, 8% O₂, 10% H₂O and a He balance was supplied at a flow rate of 100 mL min⁻¹. Concentrations of NH₃, NO, N₂O and NO₂ were monitored using an online Fourier-transform infrared spectrometer (Nicolet iS50, Thermo Fisher Scientific, USA) equipped with a temperature-controllable gas cell (2 m optical path length) maintained at 120°C.

Figure S3. XPS Survey spectra of (a) Pt/p-SUS, (b) Pt/SUS, (c) Pt/Al₂O₃/SUS, (d) Al₂O₃/SUS, and (e) SUS. Pt was coated on SUS foils using 2,000-shot AP pulses.

The XPS data revealed that peaks assignable to the SUS components (Fe, Cr, and Al) disappeared almost completely after 2,000 shots of AP deposition, suggesting full coverage of the metal foil surface by a nanometric Pt overlayer.

Figure S4. HAADF-STEM and X-ray images of cross-sectional Pt/Al₂O₃/SUS foil catalyst.

Figure S5. Dependence of NH₃ oxidation rate on partial pressures of O₂, NH₃, and H₂O for Pt/p-SUS (180°C), Pt/SUS (190°C) and Pt/Al₂O₃/SUS (210°C)

Catalyst (strip size)	Pt surface	Surface Pt	NH3	Reaction rate	TOF ^e
	area $a (m^2)$	(µmol)	conv. ^d	$(\mu mol min^{-1})$	(\min^{-1})
			(%)		
Pt/p-SUS $(3 \times 10 \text{ mm}^2)$	$3.0 imes 10^{-5}$	$7.67 imes 10^{-4}$ b	15.3	0.205	267
Pt/SUS $(3 \times 30 \text{ mm}^2)$	9.1×10^{-5}	$2.33 imes 10^{-3 b}$	18.7	0.250	107
Pt/Al ₂ O ₃ /SUS ($3 \times 30 \text{ mm}^2$)	14.4×10^{-5}	3.69×10^{-3b}	6.2	0.083	22
		$1.12 \times 10^{-2} c$	6.2	0.083	7

Table S1Activity comparison between Pt/p-SUS, Pt/SUS and Pt/Al2O3/SUS for NH3 oxidation

^{*a*} Determined by a confocal laser scanning microscope.

^b Determined by the geometric area of the foil surface, surface coverage (100%), *Sdr* and surface atomic density of Pt (1.54×10^{19} atom m⁻²) as shown below.

Pt/p-SUS:

[surface Pt] = [geometric area of foil] × [surface coverage] × [1 + Sdr] × [surface atomic density] = $3.0 \times 10^{-5} (m^2) \times 1 \times 1.000 \times 1.54 \times 10^{19} atom m^{-2}/6.02 \times 10^{23} (atom mol^{-1}) = 7.67 \times 10^{-4}$ (µmol)

$$TOF = \frac{[reaction rate]}{[surface Pt]} = 0.205 \times 10^{-6} \text{ (mol min}^{-1})/7.67 \times 10^{-10} \text{ (mol)} = 267 \text{ (min}^{-1})$$

Pt/SUS:

 $[surface Pt] = [geometric area of foil] \times [surface coverage] \times [1 + Sdr] \times [surface atomic density] = 9.0 \times 10^{-5} \text{ (m}^2) \times 1 \times 1.011 \times 1.54 \times 10^{19} \text{ atom } \text{m}^{-2}/6.02 \times 10^{23} \text{ (atom mol}^{-1}) = 2.33 \times 10^{-3} \text{ (}\mu\text{mol})$

$$TOF = \frac{[reaction rate]}{[surface Pt]} = 0.250 \times 10^{-6} \text{ (mol min}^{-1})/2.33 \times 10^{-9} \text{ (mol)} = 107 \text{ (min}^{-1})$$

Pt/Al₂O₃/SUS:

[surface Pt] = [geometric area of foil] × [surface coverage] × [1 + Sdr] × [surface atomic density] = 9.0×10⁻⁵ (m²) × 1 × 1.607 × 1.54 × 10¹⁹ atom m⁻²/6.02 × 10²³ (atom mol⁻¹) = 3.69 × 10⁻³ (µmol)

$$TOF = \frac{[reaction rate]}{[surface Pt]} = 0.083 \times 10^{-6} \text{ (mol min}^{-1}\text{)/}3.69 \times 10^{-9} \text{ (mol)} = 22 \text{ (min}^{-1}\text{)}$$

^{*c*} Determined by the CO chemisorbed at 50°C assuming the stoichiometry of CO/Pt = 1. [surface Pt] = [CO chemisorbed] = 1.12×10^{-2} (µmol)

$$TOF = \frac{[reaction rate]}{[surface Pt]} = 0.083 \times 10^{-6} \text{ (mol min^{-1})}/1.12 \times 10^{-8} \text{ (mol)} = 7 \text{ (min^{-1})}$$

^{*d*} NH₃ conversion at 200°C (300 ppm NH₃, 8% O₂, 10% H₂O, and a He balance, 100 mL min⁻¹). ^{*e*} Turnover frequency of the NH₃ conversion at 200°C.

REFERENCE

- M. Machida, Y. Tokudome, A. Maeda, Y. Kuzuhara, T. Hirakawa, T. Sato, H. Yoshida, J. Ohyama, K. Fujii and N. Ishikawa, *ACS Catal.*, 2020, 10, 4677-4685.
- M. Machida, Y. Tokudome, A. Maeda, T. Koide, T. Hirakawa, T. Sato, M. Tsushida, H. Yoshida, J. Ohyama, K. Fujii and N. Ishikawa, *ACS Omega*, 2020, 5, 32814–32822.
- M. Machida, Y. Tokudome, A. Maeda, T. Sato, H. Yoshida, J. Ohyama, K. Fujii and N. Ishikawa, *Catal. Today*, 2022, **384-386**, 70-75.