Supporting Information

Effect of Design Parameters in Nanocatalyst Synthesis on Pyrolysis for Producing Diesel-Like Fuel from Waste Lubricating Oil

Riny Yolandha Parapat^{1*}, Aji Tri Laksono¹, Rizki Imam Fauzi¹, Yuni Maulani¹, Freddy Haryanto², Alfian Noviyanto³, Michael Schwarze⁴ and Reinhard Schomäcker⁴

- ¹ Chemical Engineering Department, Institut Teknologi Nasional Bandung, PHH. Mustopha 23, 40124 Bandung, Indonesia.
- ² Physics Department, Institut Teknologi Bandung, Ganesha 10, 40132, Bandung, Indonesia
- ³Nano Centre Indonesia. Utama. Kawasan Puspitek, Gedung 410 Ruang B07, Serpong. Indonesia
- ⁴ Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany

* E-mail: rinyyolandha@itenas.ac.id

Fig. S1 Normal Plot of the Standardized Effects of Calorific Value (Cal/g)

Fig. S2 Normal Plot of the Standardized Effects of Density (Kg/m³)

Fig. S3 Normal Plot of the Standardized Effects of Catalyst Yield

Fig. S4 Contour Plots of Caloric Value (Cal/g)

Fig. S5 Contour Plots of Density (Kg/m³)

Fig. S6 Contour Plots of Catalyst Yield

Fig. S7 Surface Plots of a calorific value (cal/g), b density (kg/m³), and c catalyst yield

Fig. S8 Surface Plots of (a) calorific value (cal/g), (b) density (kg/m³), and (c) catalyst yield

Fig. S9 Response Optimization: Yield Catalyst; Density (kg/m3); Caloric Value (Cal/g); Oil Yield

Fig. S10 Particle size distribution of the TiO₂ support was measured using a Particle Size Analyzer (PSA)