Electronic Supplementary Information

ZIF-67-Derived Co-N-C Supported Nickel Cobalt Sulfide as a Bifunctional Electrocatalyst for Sustainable Hydrogen Production via Alkaline Electrolysis

Sumit,^a Apurba Borah,^a Sathishkumar Palaniyappan,^b Gaddam Rajeshkhanna^{*a}

^aDepartment of Chemistry, National Institute of Technology Warangal, Hanumakonda-506004, Telangana, India.

^bDepartment of Physics, Centre for Functional Materials, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, India.

Fig. S1 Digital images of (a) bare NF, (b) NF@ZIF-67, (c) NF@ZIF-67@NiCo₂S₄, (d) NF@Co-N-C@NiCo₂S₄.

Fig. S2 TGA analysis of ZIF-67.

Fig. S3 FESEM images of NF@ZIF-67.

Fig. S4 FESEM images of ZIF-67 after calcination (Co-N-C).

Fig. S5 EDS spectrum of NF@Co-N-C@NiCo₂S₄.

Fig. S6 (a and b) cyclic voltammograms at different scan rates ranging from 40 to 100 mV s⁻¹ (c and d) Scan rate dependent current densities of the materials.

Fig. S7 XPS survey spectrum of NF@Co-N-C@NiCo₂S₄ after (a) OER and (b) HER studies.

Fig. S8 XPS high-resolution spectra of NF@Co-N-C@NiCo₂S₄ for (a) Ni 2p, (b) Co 2p, (c) C 1s, (d) O 1s after OER study.

Fig. S9 XPS high-resolution spectra of NF@Co-N-C@NiCo₂S₄ for (a) Ni 2p, (b) Co 2p, (c) C 1s, (d) O 1s after HER study.

Catalysts	j	η	Tafel slope	Electrolyte	References
	$(mA cm^{-2})$	(mV vs	(mV dec ⁻¹)		
		RHE)			
CoNi@C on NF	100	355	55.6	1 M KOH	S1
Fe ₃ C-Co-NC on NF	50	338	59	1 M KOH	S2
NiCoDH/NiCoS	20	303	77.6	1 M KOH	S3
V _s -NiCo ₂ S ₄ /N,S-rGO	10	340	43.8	0.1 M KOH	S4
Ni ₃ S ₂ /VG@NiCo LDHs	100	320	67	1 M KOH	S5
CoS _x /Ni ₃ S ₂ @NF	10	1.572	105.4	1 M KOH	S6
	50	1.863			
Co ₃ S ₄ @rGO	10	151	59	$0.5 \mathrm{~M~H_2SO_4}$	S7
NiCoS-3	10	320	58.8	1.0 M KOH	S8
NiCo ₂ S ₄ NW/NF	10	260	40.1	1.0 M KOH	S9
$Ni_{0.7}Fe_{0.3}S_2$	10	198	56	1.0 M KOH	S10
Ni ₃ S ₂ /NF	10	260	-	1.0 M KOH	S11
NiFeS-2	10	286	56.3	1.0 M KOH	S12
FeOOH decorated on Ni	20	267	79	1.0 M KOH	S13
MOF					
NDA/MWCNTs-a	10	285	73	1.0 M KOH	S14
NiFe-Se/CFP	10	281 mV	40.93	1.0 M KOH	S15
Ni-Fe-Se/N-CNTs	10	215	97.1	1.0 M KOH	S16
powder					
NiFeSe@NiSe O@CC	10	270	63.2	1.0 M KOH	S17
NiFe-based selenide	10	216	36	1.0 M KOH	S18
powder					
NiSe ₂ NPs/	10	324	47.47	1.0 M KOH	S19
(Co.Ni)Se ₂ @NiFe LDH	10	277	75	1.0 M KOH	S20
Ni–Co–S–P	10	280	78	1.0 M KOH	S21
$(Co_{1-x}Ni_x)(S_{1-y}P_y)_2/G$	10	285	105	1.0 M KOH	S22

Table S1 Comparison of OER performance of NF@ZIF-67@NiCo $_2S_4$ and NF@Co-N-C@NiCo $_2S_4$ with other electrocatalysts in 1.0 M KOH.

FeCoNiP _{0.5} S _{0.5}	100	285	69	1.0 M KOH	S23
Ru@NiCo-MOF HPNs	10	284	78.8	1.0 M KOH	S24
NF@ZIF-67@NiCo ₂ S ₄	50	248	68	1.0 M KOH	
	100	361	68	1.0 M KOH	This work
NF@Co-N-C@NiCo ₂ S ₄	50	239	66	1.0 M KOH	
	100	300	66	1.0 M KOH	This work

Table S2 Comparison of HER performance of NF@ZIF-67@NiCo2S4 and NF@Co-N-C@NiCo2S4 with other electrocatalysts in 1.0 M KOH.

Catalysts	j	η	Tafel slope	Electrolyte	Reference
	(mA cm ⁻²)	(mV vs RHE)	(mV dec ⁻¹)		
Ni-MOF/NC-800	10	369	127.1	1.0 M KOH	S25
Fe-Co-CN/rGO-700	10	215	-	1.0 M KOH	S26
NiCo ₂ S ₄ NW/NF	10	260	67	1.0 M KOH	S9
Ni ₃ S ₂ -CNFs/CC	20	300	-	1.0 M KOH	S30
NF@ZIF-67@NiCo ₂ S ₄	20	230	139	1.0 M KOH	This work
NF@Co-N-C@NiCo ₂ S ₄	20	229	131	1.0 M KOH	This work

Table S3 Comparison of Overall water splitting performance of NF@ZIF-67@NiCo₂S₄ and NF@Co-N-C@NiCo₂S₄ with other electrocatalysts in 1.0 M KOH.

Catalysts	j	η	Reference
	(mA cm ⁻²)	(mV vs RHE)	
Co-NCNTFs//NF	10	1.62	S27
FeCoNi@FeNC	10	1.63	S28
$Co(S_xSe_{1-x})_2$	10	1.63	S36
NiS/Ni ₂ P/CC	10	1.67	S37

Ni–Co–S–P	10	1.61	S21
$(Co_{1-x}Ni_x)(S_{1-y}P_y)_2/G$	10	285	S38
Ni _{0.33} Co _{0.67} S ₂	5	1.65	S29
NiCo ₂ S ₄ NW/NF	10	1.63	S9
NiCo(OH) ₂ /NF	10	1.65	S29
N, O and S tridoped	10	1.6	S31
carbon-encapsulated			
Ni ₃ S ₄ /NF	10	1.61	S32
Ni0.7Fe0.3S2	10	1.625	S33
Ni Co-LDH/NF	10	1.66	S34
NiCo ₂ S ₄ /N-rGO	10	1.63	S35
Ni ₃ S ₂ /VG@NiCo LDHs	10	1.66	S5
NF@ZIF67@NiCo ₂ S ₄ NF@ZIF-	10	1.62	This work
67@NiCo ₂ S ₄			
$NF@Co-N-C@NiCo_2S_4(+) \ NF@Co-N-$	10	1.59	This work
C@NiCo ₂ S ₄ (-)			

References

- S1 X. Zhang, J. Luo, K. Wan, D. Plessers, B. Sels, J. Song, L. Chen, T. Zhang, P. Tang, J. R. Morante, J. Arbiol and J. Fransaer, *J. Mater. Chem. A*, 2019, 7, 1616-1628.
- S2 H. Wang, C. Sun, E. Zhu, C. Shi, J. Yu and M. Xu, J. Alloys Compd., 2023, 948, 169728.
- S3 H. Zhao, Y. Yang, X. Dai, H. Qiao, J. Yong, X. Luan, L. Yu, C. Luan, Y. Wang and X. Zhang, *Electrochim. Acta*, 2019, **295**, 1085-1092.
- S4 X. Feng, Q. Jiao, Q. Li, Q. Shi, Z. Dai, Y. Zhao, H. Li, C. Feng, W. Zhou and T. Feng, *Electrochim. Acta*, 2020, **331**, 135356.
- S5 X. Zhang, J. Fan, X. Lu, Z. Han, C. Cazorla, L. Hu, T. Wu, D. Chu, *Chem. Eng. J.*, 2021, 415, 129048.

- S6 S. Shit, S. Chhetri, W. Jang, N. C. Murmu, H. Koo, P. Samanta and T. Kuila, ACS Appl. Mater. Interfaces, 2018, 10, 27712-27722.
- S7 R. S. Kumar, S. C. Karthikeyan, S. Ramakrishnan, S. Vijayapradeep, A. Rhan Kim, J.-S. Kim and D. J. Yoo, *Chem. Eng. J.*, 2023, 451, 138471.
- S8 Z. Yu, Y. Bai, S. Zhang, Y. Liu, N. Zhang and K. Sun, Int. J. Hydrogen Energy, 2018, 43, 8815-8823.
- S9 A. Sivanantham, P. Ganesan and S. Shanmugam, Adv. Funct. Mater., 2016, 26, 4661-4672.
- S10 J. Yu, G. Cheng and W. Luo, J. Mater. Chem. A, 2017, 5, 15838-15844.
- S11 L. Feng, G. Yu, Y. Wu, G. Li, H. Li, Y. Sun, T. Asefa, W. Chen and X. Zou, J. Am. Chem. Soc., 2015, 137, 14023-14026.
- S12 B. Q. Li, S. Y. Zhang, C. Tang, X. Cui and Q. Zhang, Small, 2017, 13, 1700610.
- S13 J. Yao, Y. Ji, L. Pei, S. Tan, F. Ren, New J. Chem., 2022, 46, 9650.
- S14 S. Kiran, G. Yasmeen, Z. Shafiq, A. Abbas, S. Manzoor, D. Hussain, R. A. Pashameah, E. Alzahrani, A. K. Alanazi and M. N. Ashiq, *Fuel*, 2023, **331**, 125881.
- S15 Y. Guo, C. Zhang, J. Zhang, K. Dastafkan, K. Wang, C. Zhao and Z. Shi, ACS Sustainable Chem. Eng., 2021, 9, 2047-2056.
- S16 Y. Feng, S. Wang, H. Wang, Y. Zhong, Y. Hu, J. Mater. Sci., 2020, 55, 13927-13937.
- S17 G. Yilmaz, C. F. Tan, Y.-F. Lim and G. W. Ho, Adv. Energy Mater., 2019, 9, 1802983.
- S18 C. Xuan, K. Xia, W. Lei, W. Xia, W. Xiao, L. Chen, H. L. Xin and D. Wang, *Electrochim. Acta*, 2018, **291**, 64-72.
- S19 Y. Guo, C. Zhang, J. Zhang, K. Dastafkan, K. Wang, C. Zhao and Z. Shi, ACS Sustainable Chem. Eng., 2021, 9, 2047-2056.

- S20 J.-G. Li, H. Sun, L. Lv, Z. Li, X. Ao, C. Xu, Y. Li and C. Wang, ACS Appl. Mater. Interfaces, 2019, 11, 8106-8114.
- S21 Y. Tian, Z. Lin, J. Yu, S. Zhao, Q. Liu, J. Liu, R. Chen, Y. Qi, H. Zhang, R. Li, J. Li and J.
 Wang, ACS Sustainable Chem. Eng., 2019, 7, 14639-14646.
- S22 H. J. Song, H. Yoon, B. Ju, G.-H. Lee, D.-W. Kim, Adv. Energy Mater., 2018, 8, 1802319.
- S23 X. Wang, W. Ma, C. Ding, Z. Xu, H. Wang, X. Zong and C. Li, ACS Catal., 2018, 8, 9926-9935.
- S24 D. Liu, H. Xu, C. Wang, H. Shang, R. Yu, Y. Wang, J. Li, X. Li and Y. Du, *Inorg. Chem.*, 2021, 60, 5882-5889.
- S25 J.-L. Liu, X.-Y. Zhou, L. Qin, Y.-Q. Wang, H.-J. Zhu, G. Ni, M.-L. Ma and M.-D. Zhang, J. Mol. Struct., 2022, 1252, 132184.
- S26 W. Fang, J. Wang, Y. Hu, X. Cui, R. Zhu, Y. Zhang, C. Yue, J. Dang, W. Cui, H. Zhao and Z. Li, *Electrochim. Acta*, 2021, 365, 137384.
- S27 Q. Yuan, Y. Yu, Y. Gong and X. Bi, ACS Appl. Mater. Interfaces, 2020, 12, 3592-3602.
- S28 Q. Zhang, R. F. Webster, S. Cheong, R. D. Tilley, X. Lu and R. Amal, Part. Part. Syst. Charact., 2019, 36, 1800252.
- S29 M. Li, X. Deng, K. Xiang, Y. Liang, B. Zhao, J. Hao, J.-L. Luo and X.-Z. Fu, *ChemSusChem*, 2020, **13**, 914-921.
- S30 B. Zhao, J. Liu, X. Wang, C. Xu, P. Sui, R. Feng, L. Wang, J. Zhang, J.-L. Luo and X.-Z. Fu, *NanoEnergy*, 2021, **80**, 10553.
- S31 S. Huang, Y. Meng, S. He, A. Goswami, Q. Wu, J. Li, S. Tong, T. Asefa and M. Wu, Adv. Funct. Mater., 2017, 27, 1606585.
- S32 J. T. Ren and Z. Y. Yuan, ACS Sustainable Chem. Eng., 2017, 5, 7203-7210.

- S33 J. Yu, G. Cheng and W. Luo, J. Mater. Chem. A, 2017, 5, 15838-15844.
- S34 W. Liu, J. Bao, M. Guan, Y. Zhao, J. Lian, J. Qiu, L. Xu, Y. Huang, J. Qian and H. Li, *Dalton Trans.*, 2017, 46, 8372-8376.
- S35 H. S. Lee, J. Pan, G. S. Gund and H. S. Park, Adv. Mater. Interfaces, 2020, 7, 2000138.
- S36 X. Zhang, J. Luo, K. Wan, D. Plessers, B. Sels, J. Song, L. Chen, T. Zhang, P. Tang, J. R. Morante, J. Arbiol and J. Fransaer, *Adv. Funct. Mater.*, 2017, 27, 1701008.
- S37 X. Xiao, D. Huang, Y. Fu, M. Wen, X. Jiang, X. Lv, M. Li, L. Gao, S. Liu, M. Wang, C. Zhao and Y. Shen, ACS Appl. Mater. Interfaces, 2018, 10, 4689-4696.
- S38 H. J. Song, H. Yoon, B. Ju, G. H. Lee and D. W. Kim, Adv. Energy Mater., 2018, 8, 1802319.