Supporting Information

Suppression of Surface Optical Phonon Scattering by AlN Interfacial Layers for Mobility Enhancement in MoS₂ FETs

Woonggi Hong,¹ Gi Woong Shim,² Hyeok Jun Jin,² Hamin Park,³ Mingu Kang,² Sang Yoon Yang,² and Sung-Yool Choi^{2,*}

¹ School of Electronics and Electrical Engineering, Convergence Semiconductor Research Center, Dankook University,
 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 16890, Republic of Korea

² School of Electrical Engineering, Graduate School of Semiconductor Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea

³ Department of Electronic Engineering, Kwangwoon University, 20 Gwangun-ro, Nowon-gu, Seoul 01897, Republic of Korea

*E-mail: sungyool.choi@kaist.ac.kr

Figure S1: MOCVD-grown MoS₂ thin film

Figure S1. (a) Photograph of the MoS_2 thin film grown on a SiO₂/Si substrate. (b) Optical microscopy (OM) image and (c) scanning electron microscopy (SEM) image of metal-organic chemical vapor deposition (MOCVD)-grown MoS_2 thin film.

Figure S2. XPS spectra of (a) N 1s and (b) Mo 3d in AlN/MoS₂ stack corresponding to the plasma power for AlN deposition.

Figure S3: XPS analysis for AlN film

Figure S3. (a) AlN deposited on SiO₂ and the XPS spectrum with (b) N 1s showing N-C bond and (c) C 1s showing C-N bond.

Figure S4: MoS₂ FETs images

Figure S4. (a) OM image of MoS_2 FETs with bottom gate-staggered structure and (b) its magnified image.

Figure S5: TEM analysis for MoS₂ thin film sandwiched by AlN interfacial layers

Figure S5. (a) Cross-sectional TEM image of MoS_2 thin film sandwiched by AlN interfacial layers and (b) its Energy-dispersive X-ray spectroscopy mapping image. (c) Elemental distributions along the scan direction in (a). (d) Elemental distribution around MoS_2 thin film and (e) its corresponding stacking structure.

Figure S6. (a) Energy band diagram of MoS_2 before and after the bandgap reduction by conduction band edge. (b) Schottky barrier height change after the bandgap reduction resulting from strain.

Figure S7, S8, and S9: Electrical characteristics of MoS₂ FETs according to the interface types

Compared with MoS₂ FETs with Al₂O₃ sandwich structure, MoS₂ FETs with AlN TIL (regardless of the BIL types) yield off-current level increases due to the lowering of the Schottky barrier height by strain,¹⁻³ resulting in the degradations in terms of on/off current ratio and SS, as shown in Figure S9a. As a result of SS change, V_T extracted from 10⁻⁷ A by the constant current method varies accordingly.⁴ When MoS₂ FETs use AlN as the TIL (regardless of the BIL types), the strain effect caused by incorporating nitrogen atoms into the MoS₂ thin film remains similar, resulting in comparable V_T values. However, MoS₂ FETs with AlN BIL also yield negative shift trends in V_T compared with the MoS₂ FETs with Al₂O₃ sandwich structure. It is well known that the AlN/Al₂O₃ gate dielectric stack demonstrates an excellent interface quality with MoS₂ by reducing the trap density near the interface.⁵ Therefore, a steeper slope in the subthreshold region could be achieved

by the rapid transition of the off- to the on-state, showing the negatively shifted V_T . From the n_{2D} viewpoint, using plasma for AlN deposition causes nitrogen to penetrate the MoS₂ thin film,⁶ inducing strain and modifying the band structure at the MS junction, as shown in Figure S6b,¹⁻³ thereby changing the n_{2D} value. That is, n_{2D} is only affected by the types of TIL. For this reason, MoS₂ FETs with AlN TIL always yield higher n_{2D} values than MoS₂ FETs with Al₂O₃ TIL regardless of the BIL types.

Figure S7. Gate leakage current characteristics of MoS₂ FETs in log scale according to the interface types

Figure S8. Representative output characteristics of MoS₂ FETs with different types of interfacial layers ranging from $V_{GS} - V_T = 0$ V to $V_{GS} - V_T = 4$ V (step of 1 V).

Figure S9. Device parameters including (a) I_{on}/I_{off} , SS, (b) V_T , and n_{2D} extracted from MoS₂ FETs with different interfacial layers.

Figure S10 and S11: Electrical characteristics of graphene FETs with AIN interfacial layers

Graphene exhibits a symmetric energy band structure known as the Dirac cone structure.⁷ As graphene has no bandgap, there exists a Dirac point where the electron and hole concentrations are equal, resulting in the smallest current level at this point. In our experimental results, the Dirac point voltage (V_{Dirac}) is nearly 0 V, as shown in Figure S10a. However, when the gate bias exceeds the Dirac point voltage, electron conduction is allowed, and when it is below the Dirac point voltage, hole conduction is allowed, with the current increasing in both cases. Figure S11 indicates that I_{DS} increases as the absolute value of $V_{GS} - V_{Dirac}$ increases. However, unlike semiconductor FETs, graphene FETs do not exhibit saturation in the output curves, as shown in Figure S11. As mentioned above, graphene does not exhibit semiconducting properties because there is no bandgap. Consequently, depletion does not occur within the channel near the drain region as in semiconductor FETs, indicating that pinch-off does not occur in the graphene FETs.⁸

Figure S10. (a) Representative transfer curves and (b) field-effect mobility distribution of graphene FETs with AlN sandwich structure and Al_2O_3 sandwich structure. (c) Normalized field-effect mobility plots as a function of temperature for MoS_2 FETs with different interfacial layers.

Figure S11. Representative output characteristics of graphene FETs with (a) Al_2O_3 sandwich structure and (b) AlN sandwich structure ranging from $V_{GS} - V_{Dirac} = -2$ V to $V_{GS} - V_{Dirac} = 2$ V (step of 1 V).

References

 B. Liu, L.-J. Wu, Y.-Q. Zhao, L.-Z. Wang and M.-Q. Cai, *Phys. Chem. Chem. Phys.*, 2015, 17, 27088-27093.

2. A. P. John, A. Thenapparambil and M. Thalakulam, *Nanotechnol.*, 2020, **31**, 275703.

3. G. Polumati, C. S. R. Kolli, V. Selamneni, M. F. Salazar, A. De Luna Bugallo and P. Sahatiya, *Adv. Mater. Interfaces*, 2023, **10**, 2202108.

4. K. Chen, D. Kiriya, M. Hettick, M. Tosun, T.-J. Ha, S. R. Madhvapathy, S. Desai, A. Sachid and A. Javey, *APL Mater.*, 2014, **2**.

Q. Qian, B. Li, M. Hua, Z. Zhang, F. Lan, Y. Xu, R. Yan and K. J. Chen, *Sci. Rep.*, 2016, 6, 27676.

J. Zheng, H. Zhang, J. Lv, M. Zhang, J. Wan, N. Gerrits, A. Wu, B. Lan, W. Wang and S. Wang, *JACS Au*, 2023, 3, 1328-1336.

- 7. A. K. Geim and K. S. Novoselov, *Nat. Mater.*, 2007, **6**, 183-191.
- D. Reddy, L. F. Register, G. D. Carpenter and S. K. Banerjee, J. Phys. D Appl. Phys., 2011,
 44, 313001.