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Section 1 Fluorescence of Cy-7.5 dye in dielectric core-shell nanoparticle 

In this section, we describe our model for studying the effect of fluorescence quenching of the Cy-

7.5 dye in polydopamine in more detail compared to the main text (Section 3.1, see also Fig. 1a). 

We consider two energy levels of a single dye molecule, the ground state, dyeG , and the excited 

singlet state, dyeE , with transition frequency 0  (for simplicity, we assume that the frequencies 

of all dye molecules are the same). The transition between these levels leads to fluorescence. We 

assume that the PDA shell has a number of states 
i

PDAE . The PDA shell interacts with the dye 

molecule dyeE  via Foerster energy transfer, which leads to non-radiative transitions between the 

excited states of the dye molecules and the set of states in the PDA shell (see Fig. 1a in the main 

text). This interaction is responsible for fluorescence quenching.1 For simplicity, we assume that 

the pump rate in the system is much slower than the decay rate of the states dyeE  and 
i

PDAE  

(estimates can be found in Section 3 of Supplementary Materials). Therefore, the states 

corresponding to the simultaneous excitation of the PDA and Cy-7.5 dye levels are hardly 

populated and can be neglected. For this reason, we consider only three states of the core-shell 

dielectric nanoparticle system: 
1 ...dye PDAE E G    (the dye molecule is excited), 
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1 2 ...i

i dye PDA PDA PDAPDA G E G G      (one of the PDA states is excited), 

1 ...dye PDAG G G    (the ground state). 

The considered system can be described by the Hamiltonian: 

† †

1 0
ˆ ˆ ˆ ˆ ˆi

PDA i ii
H s s             (S1) 

where †ˆ E G   and ˆ G E   are raising and lowering operators of the dye molecule and 

obey the anticommutation relation  †ˆ ˆ; 1   ; †

î is PDA G  and 
î is G PDA  are raising and 

lowering operators of PDA states and obey the anticommutation relation  †ˆ ˆ; 1i is s  ; i

PDA  are 

energies of PDA states.  

To describe the transition between system states, one must consider the interaction of the system 

with the environment. In the general case, the Hamiltonian of a system interacting with its 

environment can be written as 

  ˆ ˆ ˆ ˆ
S R SRH H H H   ,         (S2) 

The first term in (2) is the Hamiltonian of the isolated system. The second term in (2) is composed 

of the Hamiltonians of four separate reservoirs: 

 ˆ ˆ ˆ ˆ ˆ ˆrad n deph pump PDA

R R R R R RH H H H H H            (S3) 

The first term in Equation S3 is the Hamiltonian of the EM field modes of free space, 
†

, ,,

ˆ ˆ ˆrad

RH c c 
 k k kk

. The operators 
,ĉ k

 and †

,ĉ k
 are the annihilation and creation operators 

of a photon in the mode of the EM field with frequency k , wave vector k  and polarization  . 

The Hamiltonian of the interaction of this reservoir with the system has the form 2-3 

 †

, ,,

ˆ ˆ ˆ . .rad rad

SRH c h c 
   k kk

,       (S4) 

where  , , /rad

dye dye   k kd E r  is the interaction constant; dyed  is the matrix element of dipole 

transition from the excited state of the dye to the ground state;  , dyekE r  is the electric; dyed  can 

be estimated by the radiation decay rate rad  of the dye molecules as follows 4 
3

3

0

3

4

rad
dye

c
d




 . 

The second term in (3) is the Hamiltonian of the optical phonons in the active medium, which is 

responsible for the nonradiative decay †

, ,,

ˆ ˆˆ n

RH f f 
 k k kk

. The operators ,f̂ k  and 
†

,f̂ k  are 

annihilation and creation operators of a phonon with frequency k , wave vector k  and 

polarization  . The Hamiltonian of the interaction of this reservoir with the system has the form 
2-3 

 †

, ,,

ˆˆ ˆ . .n n

SRH f h c 
   k kk

,       (S5) 

where ,

n

k
 is interaction constant. 
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The third term in the Equation S3 is the Hamiltonian of the vibrational degrees of freedom of the 

PDA shell, †ˆ ˆˆ deph

R j j jj
H b b . The operators ˆ

jb , †ˆ
jb  are annihilation and creation operators of 

the oscillations in the PDA shell with the frequency j . The following Hamiltonian describes the 

interaction of the reservoir with the system 2-3 

 †

,

ˆ ˆˆ ( ) . .deph deph

SR j j jj k n
H b b k n h c    ,      (S6) 

where k  and n  are either E  or 
iPDA . deph

j  are the interaction constants. 

The fourth term in (S3) represents pumping reservoir which can be effectively described by the 

Hamiltonian †ˆ ˆ ˆpump

R j j jj
H p p , i.e. reservoir of two-level systems with transition frequencies 

j  and positive population inversion. This reservoir describes the incoherent pumping of the 

system. ˆ
jp  and †ˆ

jp  are transition operators to the ground state and the excited state of j-th two-

level system, respectively. The pumping reservoir interacts with the electronic degrees of freedom 

of the molecule as: 2-3 

†ˆ ˆ ˆ . .pump pump

SR j jj
H p h c           (S7) 

with the interaction constant pump

j . 

The fifth term in (S3) represents optical phonons in PDA and can be effectively described by the 

Hamiltonian †ˆ ˆ ˆPDA

R j j jj
H q q , i.e. reservoir of two-level systems with transition frequencies 

j . This reservoir describes the non-radiative decay of PDA states. ˆ
jq  and †ˆ

jq  are transition 

operators to the ground state and the excited state of j-th two-level system, respectively. 

Hamiltonian of the interaction of this reservoir with the system has the form:  

†ˆ ˆ ˆ . .PDA PDA

SR j i jj i
H s q h c           (S8) 

with the interaction constant PDA

j . 

Now we use the Born-Markov approximation to exclude reservoir variables and obtain the 

Lindblad equation for the system’s density matrix: 5  

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, ( ) ( ) ( ) ( ) ( )S rad n PDA deph pump

i
H L L L L L

t


     


        

   (S9) 

ˆ ˆ( )iL   are the Lindblad superoperators having the form 

 † † †ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( ) 2
2

rad
radL


         

 † † †ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( ) 2
2

n
nL


         

 † † †ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( ) 2
2

n
PDA i i i i i ii

L s s s s s s


        
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 † † † † † †

,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( ) 2
2

ph

deph i j j i j i i j j i i ji j
PDA

L S S S S S S S S S S S S
N


       

ˆ
iS is one of operators ˆ ,ks  or ̂ ; PDAN  is the effective number of PDA states. 

 † † †ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( ) 2
2

pump

pumpL


        . 

ˆ ˆ( )radL   describes radiative decay of Cy-7.5 dye population inversion; ˆ ˆ( )nL   describes 

nonradiative decay of Cy-7.5 dye population inversion; ˆ ˆ( )PDAL   describes nonradiative decay of 

PDA states; ˆ ˆ( )dephL   describes dephasing of dye molecules polarization within PDA; ˆ ˆ( )pumpL   

describes the incoherent pumping of the dye molecules. The rates nm

i  included in the Lindblad 

superoperators are determined according to the Fermi’s golden rule 
2

ˆ( )nm i

i SRG n H m   , for 

transitions from a state n  to a state m ,6 and obey the Kubo-Martin-Schwinger condition 

/ exp[ ( ) / ]nm mn

i i n m iE E kT     , 4, 7-8 where nE  is the energy of n-th eigenstate, and iT  is the 

temperature of the reservoir i.  

To summarize this section, let us describe all possible transitions between system states. First class 

of transitions is the relaxation of the population inversion of the dye molecules, which includes 

both radiative and nonradiative transitions. This process leads to the transition from the excited 

states of the dye molecule to the ground state, E G . Second class is the relaxation of the 

population inversion of the PDA states via non-radiative transitions. This process leads to the 

transition from the PDA states to the ground state, 
iPDA G . The dephasing processes in the 

dye molecules lead to the destruction of the polarizations phases in the dye molecules and cause  

third class of transitions between excited states of the dye molecule, E , and PDA states, 
iPDA

. This process determines the linewidth of a dye molecule in polydopamine. Finally, the optical 

pumping of the system leads to the fourth class of transitions, G E . All transitions are 

schematically shown in Fig. 1a in the main text. 

From the master Equation S9, kinetic equations can be derived for the occupation of the excited 

state of the dye molecules,   †ˆ ˆ ˆTrEn t   , the occupation of the ground state of the dye 

molecules,   †ˆ ˆ ˆTrGn t  , and the total occupation of the PDA states, 

  †ˆ ˆ ˆTrPDA i ii
n t s s  . The resulting equations have the form 

( )

( )

E rad n E pump G ph E ph PDA

PDA ph E ph PDA n PDA

G rad n E pump G n PDA

n n n n n

n n n n

n n n n

    

  

   

     

  

   

      (S10) 
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Here 
rad  is the radiative decay rate of Cy-7.5 dye population inversion; 

n  is the non-radiative 

decay rate of Cy-7.5 dye population inversion; pump  is the incoherent pump rate; ph  is the 

dephasing rate responsible for the natural spectral width of Cy-7.5 within PDA; ph  is the rate of 

inverse transition (from PDA states to the excited Cy-7.5 singlet state); n  is the non-radiative 

decay rate of PDA states. 

The final step is to determine the rates in Equation S10 from experimental data. First, the sum of 

the radiative and nonradiative decay rates equals the fluorescence decay rate determined by the 

experiment (see Fig. 2b in the main text). The radiative decay rate can be calculated as the quantum 

yield of the Cy-7.5 dye multiplied by the total fluorescence decay rate. The quantum yield of the 

Cy-7.5 dye is known to be 0.1.9 Second, the dephasing rate ph  can be estimated from the linewidth 

of Cy-7.5 dye emission. The effective number of PDA states PDAN  need not be determined because 

this this value disappears from the final equations. However, Equation S10 contains not only the 

rate ph , but also the inverse rate ph  describing the probability flux from 
iPDA  states to E . 

This rate can be estimated as 
0exp[ ( ) / ] /ph PDA PDAkT N    , where 

PDA  is the effective 

frequency of PDA levels interacting with the excited state. We use the factor 

0exp[ ( ) / ] /PDA PDAkT N    as an optimization parameter in our calculations to obtain the 

best fit of the experimental data for the fluorescence cross section of both the dielectric 

nanoparticle and the plasmonic nanoparticle simultaneously. Finally, the pump rate pump  is 

estimated from the intensity of the pump laser used (see details in Section 3 of supplementary 

materials). 

 

Section 2 Fluorescence of Cy-7.5 in plasmonic Core-Shell nanoparticle 

In this section, we consider our model of fluorescence of Cy-7.5 molecules and the suppression of 

quenching in PDA by optical coupling to a plasmonic nanoparticle in more detail (Fig. 1b in the 

main text). To describe Cy-7.5 molecules located in the PDA shell coupled to a plasmonic 

nanoparticle, we need to consider the following subsystems. First, a plasmonic mode with 

equidistant energy states , 0,1...n n  . Second, N dye molecules located in the hotspot of the 

plasmonic mode, with ground states jG  and excited singlet states jE  with transition frequency 

0  (for simplicity, we assume that the frequencies of all dye molecules are the same). Finally, a 

set of PDA states is denoted as 
i

PDAE . Note that, unlike in Section 1 in supplementary materials, 

we consider the collective states of N dye molecules. The reason is that the plasmonic nanorod 

couples to the collective state of dye molecules, not to a single molecule. 10-11 Similar to Section 1 

in supplementary materials, we assume that the average number of excitations in the system is less 

than one (see Section 3 in Supplementary materials). Therefore, the ground state (without 

excitations in any of the subsystems) and states with a single excitation are sufficient to describe 

the dynamics. These states are explicitly listed in the remainder of this section. 

A gold nanoparticle in the form of a spheroid supports two dipole resonances. Using12-13  equations 

7.9-7.10 (see also Fig. 12.5 in Ref.14), we obtain that these resonances occur at two different 

frequencies, namely at 500nm   and 834nm  . Note that the PDA with which the gold particle 

is coated has a dielectric permittivity of 2.2.15-16Therefore, we only consider a plasmonic mode at 
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834nm   that is close to Cy-7.5 transition frequency and the frequency of the external driving 

field. Following the second quantization procedure5, the Hamiltonian of the electric field of the 

plasmonic nanoparticle takes the form of the Hamiltonian of a harmonic oscillator, †ˆ ˆ ˆ
p pH a a

, where creation and annihilation operator, †â  and â , obey boson commutation relation 
† ˆˆ ˆ, 1a a   

. The plasmon electric field has the form 
    0 †ˆ ˆ ˆ

p p a a E E r . The magnitude 
   0

pE r  has the 

meaning of the electric field “per one plasmon” and is determined by the normalization condition 

  
 

2
3 0

Re ,1

8
p

p p

V

d



  


 




r
r E r . 

We assume that there is a dipole transition between the respective excited states jE  and ground 

states jG  of the dye molecules with matrix element 
 j
dyed  that is the dipole moment operator of 

the j-th molecule is      ˆ j j

dye dye j j j jE G G E d d . The operators j jE G  and j jG E  

describe transitions from state jG  to state jE  and vice versa. In the dipole approximation, the 

Hamiltonian of the interaction of a plasmonic nanoparticle with dye molecules has the form 

   int

1

ˆ ˆ ˆ
N

j

dye p j

j

H


  d E r , where jr  is the radius vector of the position of j-th molecule. 

Summarizing the above, we obtain the following Hamiltonian of the system: 

ˆ ˆ
dye plasmon PDAH H  ,          (S11)  

where † † † †

0
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( )dye plasmon j j p R j jj j

H a a a a             and 
†ˆ ˆ ˆi

PDA PDA i ii
H s s . 

†ˆ
j j jE G   and ˆ

j j jG E   are the raising and lowering operators of j-th dye molecule 

obeying the anticommutator relation  †ˆ ˆ; 1j j   ; 
†

îs  and ˆ
is  are raising and lowering operators of 

the PDA states (see Section 1 in Supplementary materials); 
     0

/
j

dye p j  d E r  is the Rabi 

constant of the interaction between j-th molecule and plasmon mode. For simplicity, we assume 

that the Rabi constant is the same for all dye molecules. 

The Hamiltonian in Equation S11 has the set of operators, 
†

îs  and ˆ
is , which are included in ˆ

PDAH  

only. Therefore, the problem of finding eigenstates of Hamiltonian in Equation S11 reduces to 

finding states of ˆ
dye plasmonH   and ˆ

PDAH . ˆ
dye plasmonH   is the Tavis-Cummings Hamiltonian and its 

eigenstates can be found exactly.10-11 Since we are working in low excitation approximation, we 

only need to find the ground state and the set of eigenstates with one excitation. The ground state 

G  of the system is composed of the ground state of the Tavis-Cummings model 

10 ... NG G    and the ground state of the PDA levels, so that 

1

10 ... ...N PDAG G G G       . Eigenstates with one excitation are:10-11, 17  

- N-1 dark states with transition frequency 0D   arising from Tavis-Cummings model  

- the PDA states 
1

10 ... ...i

N PDA PDAG G E G       
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- lower polariton state with transition frequency 

2

0 0 2
( )

2 4

p p

LP N
   


 

    and 

wavefunction 

1

1

1 ... ...

0 ... ... ...

i

LP N PDA

iLP
j N PDAj

LP A G G G

B
G E G G

N

      

       
 

- upper polariton state with transition frequency 

2

0 0 2
( )

2 4

p p

UP N
   


 

    and the 

wavefunction 

1

1

1 ... ...

0 ... ... ...

i

UP N PDA

iUP
j N PDAj

UP A G G G

B
G E G G

N

      

       
 

where 0

2 2

0( )

LP

LP

LP

A
N

 

 




 
 and 

2 2

0( )
LP

LP

B
N 




 
 are Hopfield coefficients for 

lower polariton, whereas 0

2 2

0( )

UP

UP

UP

A
N

 

 




 
 and 

2 2

0( )
UP

UP

B
N 


 

 
 are 

Hopfield coefficients for upper polariton. These coefficients describe the relative weight of the 

plasmon (
2 2
,LP UPA A ) or molecule (

2 2
,LP UPB B ) parts of polariton.18-19 

It is known that polariton frequencies ,LP UP  are additionally affected by the concentration 

quenching,20 but at dye concentrations 18 32.5 10 cm  these effects are insignificant.20 

Using the expressions for lower and upper polariton frequencies we obtain that 880 nmLP  , 

770 nmUP  . We note that the incoherent pumping occurs at 780 nm. Because of this detuning, 

the pumping of both the lower and the upper polariton is inhibited. Dark states have a weak 

interaction with pumping since they are characterized by a dipole moment close to zero, therefore, 

the pumping of these states can be neglected. However, dephasing process in dye molecules 

ensures a probability flow between polaritonic states and dark states, therefore, dark states are 

populated despite not being pumped directly. Thus, we conclude that in the limit of small pumping 

rates, the only populated states are the ground state G , states with an excited PDA level 
iPDA

, the LP state LP , the UP state UP , and dark states iD . 

Similar to the Section 1 in Supplementary Materials, the interaction of the system “plasmonic 

nanoparticle + dye molecules” with the environment leads to transitions between eigenstates. The 

reservoir Hamiltonian in this case consists of Hamiltonians from six separate reservoirs: 

 ˆ ˆ ˆ ˆ ˆ ˆ ˆrad n J deph pump PDA

R R R R R R SRH H H H H H H            (S12) 

The first term in Equation S12 is the Hamiltonian of the EM field modes of free space, 
†

, ,,

ˆ ˆ ˆrad

RH c c 
 k k kk

, similar to the first term in Equation S3. However, the Hamiltonian of the 
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interaction of the reservoirs with the system has a different form because the plasmonic particle 

has its own dipole moment: 2-3 

 † †

, , , , ,,

ˆ ˆˆ ˆ( ) . .rad rad rad

SR pl dye jj
H a c h c  

     k k kk
     (S13) 

where  , , , /rad

p p pl   k kd E r  and  , , , /rad

dye dye dye   k kd E r  are the characteristic interaction 

rate between the EM field and the plasmon and the dye, respectively; and p pd  d  is the matrix 

element of dipole transitions from plasmon excited state to the ground state. The pd  is estimated 

as ~1400D .20-21 

The second term is responsible for the nonradiative decay of the dye molecule and is of the form 
†

, ,,

ˆ ˆˆ n

RH f f 
 k k kk

. Its interaction term is given in equation (5). This term is insignificant for 

molecules in the vicinity of plasmonic nanoparticle, since the nonradiative decay of LP is mainly 

due to ohmic losses in the metal of the plasmonic nanoparticle. Therefore, this term is omitted 

from the Lindblad equation for dye molecules in the vicinity of plasmonic nanoparticle.  

Ohmic losses are described by the third term, representing the phonon bath, †ˆ ˆ ˆJ

R j j jj
H r r . 

The operators ˆ
jr  and †

ĵr  correspond to the relaxation and excitation of a phonon with frequency 

j  in the metal. The interaction of this reservoir with the system is: 2-3 

†ˆ ˆ ˆ . .J J

SR j jj
H a r h c           (S14) 

The interaction constant between j-th phonon mode and the plasmon is equal to J

j . 

The fourth term in (12) is the Hamiltonian of the vibronic degrees of freedom of PDA, 
†ˆ ˆˆ deph

R j j jj
H b b . The interaction Hamiltonian is similar to the analogous term in Equation S6: 

2-3 

 †

,

ˆ ˆˆ ( ) . .deph deph

SR j j jnkj k n
H b b k n h c    ,      (S15) 

where k  is either 
iE  or 

iPDA  or 1 .  

The fifth term in Equation S12 is the Hamiltonian of the pump reservoir, †ˆ ˆ ˆpump

R j j jj
H p p . 

In the case of molecules arranged in the dielectric nanoparticle the pump reservoir interacts both 

the electronic degree of freedom of the molecule and the plasmonic particle as: 2-3  

† †

, ,
ˆ ˆˆ ˆ( ) . .pump pump pump

SR j pl j dye i jj i
H a p h c            (S16) 

with the interaction constants 
,

pump

j pl  and 
,

pump

j dye . Similar to Equation S13 the terms with 
,

pump

j dye  

multiplier can be neglected. 

The sixth term in Equation S12 represents optical phonons in PDA can be effectively described by 

the Hamiltonian †ˆ ˆ ˆPDA

R j j jj
H q q , i.e. reservoir of two-level systems with transition 

frequencies j  and positive population inversion. This reservoir describes the non-radiative decay 
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of PDA states. ˆ
jq  and †ˆ

jq  are transition operators to the ground state and the excited state of j-th 

two-level system, respectively. Hamiltonian of the interaction of this reservoir with the system has 

the form:  

†ˆ ˆ ˆ . .PDA PDA

SR j i jj i
H s q h c           (S17) 

with the interaction constant PDA

j . 

Now, we use the Born-Markov approximation to exclude the reservoir variables and obtain the 

Lindblad equation for the density matrix of the system: 5  

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, ( ) ( ) ( ) ( ) ( )S rad J PDA deph pump

i
H L L L L L

t


     


        

   (S18) 

ˆ ˆ( )iL   are the Lindblad superoperators having the form 

 † † †ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( ) 2
2

p

rad
radL a a a a a a


       

 † † †ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( ) 2
2

p

n
JL a a a a a a


       

 † † †ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( ) 2
2

n
PDA i i i i i ii

L s s s s s s


       

 † † † † † †

,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( ) 2
2

ph

deph i j j i j i i j j i i ji j
L S S S S S S S S S S S S


       

ˆ
iS is either ˆ , 1,...ks k   or ˆ , 1,...k k   or â . 

 † † †ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( ) 2
2

p

pump

pumpL a a aa aa


       

Here ˆ ˆ( )radL   describes the radiative decay in the “molecules in plasmonic nanoparticle” system; 

ˆ ˆ( )JL   describes the non-radiative decay in the “molecules in plasmonic nanoparticle” system; 

ˆ ˆ( )PDAL   describes nonradiative decay of PDA states;  ˆ ˆ( )dephL   describes dephasing of dye 

molecules polarization and plasmon polarization within the PDA; ˆ ˆ( )pumpL   describes the 

incoherent pumping of plasmon. 

Let us summarize relaxation processes and all possible transitions described by Equation S18. First 

relaxation process is the relaxation of energy in the plasmonic nanoparticles due to ohmic and 

radiation losses. This relaxation process leads to energy transitions between states LP G , 

UP G . Since these two rates are much faster than the relaxation rates of the population 

inversion of the dye molecules,12, 22 the latter can be neglected. Second relaxation process is the 

relaxation of the population inversion of PDA states across nonradiative transitions. We assume 

that PDA decays nonradiative. This process leads to the transition from the PDA states to the 

ground state, iPDA G . Third relaxation process is the dephasing processes in the dye 
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molecules and plasmon particle that lead to destruction of the polarizations phases and cause 

transitions between the lower polariton, LP , the upper polariton, UP , the dark states 
iD , and 

the PDA states, 
iPDA . Finally, the optical pumping of the system leading to transitions 

G LP , G UP . All processes are shown schematically in Fig. 1b in the main text. 

The important question is to determine the rates nm

i  in Equation S18. Since LP and UP states are 

a mix of molecular and plasmonic excitations, all transition rates associated with them are modified 

by Hopfield coefficients LPA , LPB , UPA  or UPB  (see Equation S19 for more detail). Numerically, 

these values are determined from the expression for the LP state and UP state. The radiation 

relaxation rate of the plasmonic nanoparticle can be determined from its dipole moment as 
3 2

0

3

4

3

pp

rad

d

c


  . Ohmic losses in the plasmonic nanoparticle, n

rad , can be determined through the 

characteristic volume of the plasmonic particle and dielectric permittivity of gold and PDA.12, 22 

The dephasing rate p

ph  that leads to transition plasmonic states to PDA states can be found from 

the difference between the linewidth of plasmonic nanoparticle in absence of PDA shell and the 

linewidth of plasmonic nanoparticle within PDA shell.  The pumping rate p

pump  is estimated based 

on the intensity of the pumping laser (see details in Section 3 in Supplementary materials).  

Ultimately, Eq. (S18) and the corresponding rates (see Table S2) are sufficient to write the kinetic 

equations. Similar to Section 1 in Supplementary materials, the rates of the above processes are 

determined using Fermi’s golden rule with numerical values from experimental data.  

The kinetic equations describing the transition between the energy levels of the system are of the 

form:  

 

2 2 2 2

2 2 2 2

2 2 2

2 2

2

( ) ( )

( ( ))

( )

( )

p p UP p

UP UP rad n UP UP pump G UP ph UP ph UP

a LP UP LP UP a LP UP UP LP UP

p

UP UP UP ph UP ph PDA

D ph D UP UP LP D

p p

LP LP rad n LP

n A n A n B A n

A A B B A B A B n

N A n B A n

n n N A n B n

n A n

 



 

    

   

  

  

 

      

    

  

   

   
2 2 2

2 2 2

2 2 2 2

2 2 2 2

2 2

( )

( )

( ( ))

( ) ( )

( )

LP p

LP pump G LP ph LP ph LP

p

LP ph LP ph PDA LP D

a LP UP LP UP a LP UP UP LP UP

p p

PDA ph D LP ph LP ph LP UP ph UP ph UP

p

LP ph LP ph PDA

A n B A n

B A n B n

A A B B A B A B n

n n B A n B A n

B A n



 

  

  

   

    

 

  

   

   

     

  
2 2

2 2 2

2

( )

( ) ( )

p

n PDA UP ph UP ph PDA

p p p p LP

G LP rad n LP UP rad n UP LP pump G

UP

UP pump G n PDA

n B A n

n A n A n A n

A n n

  

    

 

 

     

 

  (S19) 
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where LPn ,  UPn  and Gn  are the populations of the LP, UP and ground states, respectively. The 

PDAn  is the sum of the populations of the PDA states. The 
Dn  is the sum of the populations of 

dark states. The p

rad  is the radiative relaxation rate of the plasmon; p

n  is the nonradiative 

relaxation rate of the plasmon. LP

pump   and UP

pump  is the pump rate from G  to LP  and from G  

to UP , respectively. The 
ph  and p

ph  are dephasing rates associated with dye molecules and 

plasmonic particle, respectively; ph  and p

ph  is the rate of inverse transition from the PDA state 

to LP and UP. 
0exp[ ( ) / ] /ph ph PDA PDAkT N       (similar to the system with dielectric 

particle, see Section 4.1). Note that neither PDAN  not 
PDA  need to be determined, instead, the 

factor 
0exp[ ( ) / ] /PDA PDAkT N    is used as an optimization factor for both the system with 

the dielectric particle and the plasmon system. For the sake of simplicity, the transition rate from 

PDA levels to plasmon level, p

ph , is assumed to be modified by same factor as the transition rate 

from PDA to dye molecule excited state ph , namely, /p p

ph ph ph ph     . A more accurate model 

can be developed if we consider the structure of energy levels in PDA and all the transition rates 

within. However, this approach is excessively complex. n  is the non-radiative decay rate of the 

PDA states into the ground state G . The 
2

0.61LPA   is the fraction of plasmon state in LP, 

2
0.39LPB   is the fraction of excited dye states in LP. The 

2
0.39UPA   is the fraction of plasmon 

state in UP, 
2

0.61UPB   is the fraction of excited dye states in UP. Each term in equation (5) 

represents the corresponding relaxation rate depicted in Fig. 1b. 

Equations S19 allow us to determine the effective fluorescence cross section of dye molecules in 

plasmonic nanoparticle compared to a free molecule of Cy-7.5 dye. To do this, we determine the 

steady-state value of radiating state populations, LPn  and UPn , from Equation S19. The 

fluorescence intensity is determined by the radiation relaxation rate of the plasmonic particle 
p

rad  

and the population of LP and UP. Unlike the dielectric nanoparticle with dye molecules, the 

plasmonic system acts as a single emitter. 

 

Section 3 Estimate of probability of excitations of different states in the pumped nano-

mesoscopic systems 

In this section, we estimate probability of excitations for Cy-7.5 dye molecules in PDA shell 

without plasmonic nanoparticle, as well as the probability of excitations for lower polariton (LP) 

and upper polariton (UP) in the Core-Shell plasmonic nanoparticle. These probabilities determine 

the fraction of Cy-7.5 molecules in the excited states and the fraction of hybrid nanoparticles which 

are in LP and UP states, respectively. 

The probability of excitations in the system is determined by the pump power and relaxation rates. 

The relaxation rates are established experimentally from fluorescence decay rates (see Fig. 2 in 

the main text). The pumping rate can be calculated using the established formula for the imaginary 

part of dielectric constant of the active medium: 
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2

Im( ) 4
dyed n



 


 , 

where n – is the concentration of active atoms. From this expression we can estimate the absorption 

cross section of a single molecule of the active medium and find for given values of , ,ph dyed n  

and continuous pump power 1 2kW/cm  that the probability of an individual Cy-7.5 molecule 

excitation in dielectric nanoparticle is 22 10 , and 22 10 ( )pump rad n rad n        .  

A similar estimate can be made for the NP-dye molecules system. Since the dipole moment of the 

Au nanorod (estimated as 1400D  from dimensions) is approximately 100 times larger than the 

dipole moment of dye molecules (approximately 13D ), the emission rates for plasmonic nanorod 

are 410  faster than those for a dye molecule. The absorption rate benefits from larger dipole 

moment as well, however, due to the frequency shift of the LP compared to the excited state of the 

molecule, the pumping becomes less efficient proportional to Lorenz factor 
2 2 2( / 2) / ( / 2) ( )LP LP pump LP       , where LP  is the linewidth of the LP and pump  is the 

frequency of the incoherent pumping (the system is pumped at 780 nm). Moreover, the pump rate 

is further decreased by the fact that the polarization of plasmonic nanoparticle may not coincide 

with the polarization of pumping light. Averaging over all possible polarizations yields a factor of 

1/ 3 . Thus, we estimate probability of excitation of LP state as 53 10  and corresponding pump 

rate 53 10 ( )LP p p p p

pump rad n rad n        . Similar estimate can be done for UP, which yields 

probability of excitation of UP state 55 10  and pump rate 55 10 ( )UP p p p p

pump rad n rad n       

.  

 

Table S1. List of transition rates between the energy levels for the silica structure 

Transition from «1st state» to «2nd state» Rate of forward transition 

Excited dye state  ground state 
E G rad n      

PDA states ground state 
PDA G n    

PDA states  excited dye state 
PDA E ph    

Excited dye state  PDA states 
E PDA ph    

Ground state Excited dye state 
G E pump    

 

Table S2. The values of the relaxation rates and frequencies in systems under consideration 

9

01.1 10pump    8

04.7 10rad    7

04.2 10n    
2

03 10ph    8

03 10ph    

2

06 10    00.18a    5

01.5 10n    00.14p

ph   7

01.4 10p

ph    

7

02.9 10LP

pump    74.6 10UP

pump    
4

04.6 10p

rad    
3

08.3 10p

n    

15 1

0 2.33 10 c    
15 12.26 10p c    
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Section 4 Measurements of the concentration of dye molecules in the shell of plasmonic 

nanoparticles on the PDA shell unquenching effect  

Figure S1 shows the results of the measured dependence of the "PDA shell unquenching" effect 

on the concentration of dye molecules in the nanoparticle shell. The effect is shown as the ratio of 

the measured fluorescence signal of a single plasmonic nanoparticle to that of a single dielectric 

nanoparticle both surrounded by PDA shell embedded with Cy 7.5. For each concentration, the 

fluorescence of seven different pairs of dielectric and plasmonic nanoparticles is shown. As can 

be clearly seen from the figure, the maximum "unquenching" effect is realized for the 

concentration of dye molecules in the shell 
18 3.5 10 cm  .  

 

Figure S1. Dependence of the "PDA shell unquenching" effect on the concentration of dye 

molecules in the nanoparticle shell. The effect is presented as the ratio of the measured 

fluorescence signal of a single plasmonic nanoparticle to that of a single dielectric nanoparticle. 

For each concentration, the fluorescence of seven different pairs of dielectric and plasmonic 

nanoparticles is presented. 

 

Section 5 Modeling of extinction spectra  

In this section we demonstrate qualitative description of extinction spectra of dye-plasmon system. 

We assume that there are two molecule states interacting with the plasmonic particle per Cy 7.5 

dye molecule responsible for two peaks in Figure 2c. The reason why only one state is considered 

in Sections 1-2 of Supplementary materials is because only one state participates in emission 

process. With two states interacting with the plasmon nanoparticle, the Hamiltonian becomes:  



14 

 

† † †

2 0 0 0

† † † †

ˆ ˆˆ ˆ ˆ ˆ ˆ( )

ˆ ˆˆ ˆˆ ˆ ˆ ˆ( ) ( )

j j j j pj j

R j j R j jj j

H a a

a a a a

       

   

    

     

 

 
     (S20) 

where 0 0   is Cy 7.5 dye absorption frequency estimated from experimental data, see Figure 

2c from the main text, 14 1

0 2.5 10 c    ; 14 11.4 10R c    is the adjusted interaction constant 

determined in such way that results in the same detuning of 14 12.38 10 c  between emitting LP 

and UP states as Equation (S11).  

Using Eq. (S20) we can determine the transition frequencies of the Core-Shell system, as well as 

their linewidth, from Table (S2). The resulting spectra, and their comparison to experimetal data 

are depicted in Figures S2-S3. 

 

 

Figure S2. Comparison between experimental extinction spectrum (solid orange curve) and 

theoretically predicted spectrum (dashed black curve) in core-shell nanoparticle without dye 

molecules (Au nanorod surrounded by PDA shell). 

 

Figure S3. Comparison between experimental extinction spectrum (solid blue curve) and 

theoretically predicted spectrum (dashed black curve) in core-shell nanoparticle with Cy 7.5 dye 

molecules (Au nanorod surrounded by PDA shell with embedded Cy 7.5 molecules). 

Section 6 Estimates of energy splitting in the hybrid system 
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We start by estimating coupling strength between dye molecules and plasmon NP as 

 
2

2 2

0 02 / 4p    where the first term inside the square root describes splitting in absence 

of interaction and 
2

2

0 0 ( )i dyei
  E r d  is splitting due to the interaction 23-24. Here 

0

4
( ) ( )i i

mode

f
V

 
E r r  is electric field ‘per one plasmon’ 5, 25, ( )if r  is normalized (

0 0( ) ( ) / max ( )f r E r E r ) spatial field distribution of the plasmon mode at location of each dye 

molecule, ir , modeV  is the plasmon mode volume, 
2 23

0 0( ) / max ( )modeV d  E r r E r  26. Supposing 

that the dipole moments of dye molecules are oriented parallel to the plasmon electric field, the 

expression for coupling strength can be simplified to 
24

( )dye ii
mode

f
V

 
d r . The expression 

under square root sign is very similar to normalization condition, which is what we intend to 

exploit. We transition from sum to integral as follows: 

 
2 2 2 3( ) ( ) ( )i ii i shell

f V f f d     r r r r  

where V  is volume per one dye molecule (that is small enough to assume that the field is 

approximately constant inside this volume), and   is dye concentration (evidently, 1/ V   ). 

We assume that the plasmonic mode lies almost entirely within PDA shell with embedded dye 

molecules. In this case 
2 23 3( ) ( ) mode

shell
f d f d V  r r r r . Inserting this into the expression for 

coupling strength yields 4 dye  d .  

To obtain energy splitting we take into account the initial frequency detuning between the mode 

and active molecules 23. This results in the following expression: 

2 2
20( )

2 4
4

p

dye

 
 


 d

, where the first addend inside the square root describes splitting in absence of interaction, and ‘2’ 

in front stands for two energy levels shifting in the opposite directions (similar to trivial resonant 

case where the splitting is the interaction strength times two 27. Inserting all the numbers: 

0( ) 46meVp   , 
31.48 10 meV   , 1713 1.3 10dyed D CGS   , 18 32.5 10 cm   , 

2

0.26meVdye  d , we obtain the resulting splitting 146meV . Note that the first term in the 

square root contributes little to the final result, and the splitting is mostly attributed to interaction 

strength.  

 

Section 7 Quantity of SERS signal in the measured spectra 

In this section we show results of our fluorescent measurements for the different samples: (a) Core-

Shell plasmonic nanoparticle, (b) Core-Shell dielectric nanoparticle, (c) nanorods without shell. 

The dielectric core-shell nanostructure consists of a silica core with a diameter of about 50 nm and 

a shell of 5 nm thick PDA with Cy 7.5 molecules. The plasmonic hybrid core-shell nanostructure 

consists of an Au nanorod with a 10 nm thick PDA shell containing Cy 7.5 dye molecules. The 

Au nanorod has a width of 10 nm and a length of 40 nm, Cy 7.5 dye molecules were embedded in 

the polymer shell at a concentration of 2.5 × 1018 cm-3. Figure S4 shows the results of fluorescence 
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measurements for samples excited with CW laser radiation at 780 nm with an intensity of about 1 

kW/cm2. For the fluorescence measurements, a set of long-pass interference filters was used to 

detect emission at wavelengths above 800 nm. 

 

Figure S4. Measuremets of fluorescence signal from three different objects: (a) Core-Shell 

plasmonic nanoparticle, (b) Core-Shell dielectric nanoparticle, (c) nanorods.  

 

The measurements on Fig. S4 show that the fluorescence of a single plasmonic particle is many 

orders of magnitude smaller than the resulting emission from NP+dye system. This indicates that 

the background is not SERS background, but fluorescence. Thus the ratio between the fluorescence 

signal and the SERS signal in the measured spectrum in Fig. 3a is approximately 11:1. In other 

words, the signal from SERS accounts for about 8% of the measured signal. 

 

Section 8 Materials and experimental setup 

Experimental setup 

The experimental setup is based on Nikon Ti-U inverted microscope with 780 nm cw laser for 

excitation and corresponding filter cube (Semrock BP FF01-775/46-25, dichroic mirror Di03-

R785-t3-25x36, notch NF03-785E-25). Laser radiation and fluorescence was focused and 

collected through the 100x NA 1.49 Oil objective. We used Princeton Instruments EMCCD as 2D 

detector. For fluorescence lifetime measurements we used PicoHarp 300 TCSPC system with 

SPAD, which was connected to the microscope through 100 µm fiber as confocal aperture and 780 

nm 100 fs pulsed laser for excitation. Extinction spectra were measured using AnalyticJena 

Specord 200 spectrophotometer.  

 

Sample preparation 



17 

 

Reagents. Dopamine hydrochloride (DA, H8502), Cetyltrimethylammonium bromide (CTAB, > 

98.0%), cetyltrimethylammonium chloride (CTAC, 25% water solution), L-ascorbic acid (AA, 

>99,9), hydrochloric acid (HCl, 37 wt.% in water), tetraethyl orthosilicate (TEOS, 98%), thiolated 

polyethylene glycol (mPEG-SH, 99%), and sodium borohydride (NaBH4, 99%) were purchased 

from Sigma-Aldrich. CY7.5–amine was obtained from Lumiprobe. Hydrogen tetrachloroaurate 

trihydrate (HAuCl4·3H2O) and silver nitrate (AgNO3, >99%) were purchased from Alfa Aesar. 

Ultrapure water obtained from a Milli-Q Integral 5 system was used in all experiments. 

Synthesis of AuNRs. Au NRs with diameters of about 10-12 nm were synthesized by a seed-

mediated growth method 28 with minor modifications concerning the concentrations of some 

reagents and reaction protocols. First, seed gold particles are prepared by adding aqueous sodium 

borohydride (10 mM, 0.6 ml) to a mixed aqueous solution of CTAB (0.1M, 10 ml) and HAuCl4 

(10 mM, 0.25 ml). For preparation of AuNRs with the aspect ratio of about 4, 1 ml of 4 mM 

AgNO3, 2.5 ml of 10 M HAuCl4, 0.5 ml of 80 mM AA, 0.5 ml of 1М HCl, and 0.5 ml of gold seed 

solutions are sequentially added to 50 ml of 0.1 M CTAB solution. The nanorods are allowed to 

grow overnight without stirring at 30 °C. 

Coating with PDA shell containing different amount of CY7.5. First, the prepared nanorods were 

PEGilated using procedure described elsewhere 28. After PEGilation AuNRs were dispersed in 

water in concentration of 300 µg/mL which correspond to number concentration of 45×1011 mL-1 

(see calculation below). PDA shell were grown on the surface of PEGilated nanorods. Tho this 

end 1 mL of AuNRs was mixed with 2 mL of water and 300µL of 100 mM Tris buffer (pH=8.5). 

Dopamine (DA) solutions at initial concentration 5 mg/mL were freshly prepared in water. Next, 

100 µL of DA solution was quickly injected into the mixtire and allowed to react for 3 h at the 

room temperature under continuous stirring (500 rpm). To initiate formation of CY7.5 embedded 

PDA shell 5, 20 and 80 µL of CY7.5 amine solution in DMSO (1 mg/mL) were added to different 

batches of nanorod during shell growth process. The as-synthesized PDA coated nanorods with or 

without CY7.5 was purified by repeated centrifugation at 12000 g for 15 min and finally 

resuspended in 3 mL of water. 

Synthesis of PDA coated silica reference particles. An aliquot (1.5 mL) of 30% ammonia was 

added to 50 mL of absolute ethanol. The mixture was stirred vigorously, and a subsequent aliquot 

(1.5 mL, 6.7 mmol) of TEOS was added dropwise. The mixture was allowed to react during 3 

hours under stirring (300 rpm). The as-synthesized silica particles were purified by repeated 

centrifugation at 12000 g for 15 min and finally resuspended in 50 mL of water. The PDA shell 

was grown according procedure presented above without significant modifications. 
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