Electronic Supplementary Information for

Valley polarization and magnetic anisotropy of two-dimensional Ni₂Cl₃I₃/MoSe₂ heterostructure

Bo Chen¹, Baozeng Zhou¹, Xiaocha Wang^{1*}

¹Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit

Science and Engineering, Tianjin University of Technology, Tianjin 300384, China

^{*}Author to whom all correspondence should be addressed.

E-mail: wangxc@email.tjut.edu.cn

A. Band structure of Ni₂Cl₃I₃/MoSe₂

Fig. S1. The band structure of $Ni_2Cl_3I_3/MoSe_2$ using the PBE+U.

Fig. S2. The MAE of Ni₂Cl₃I₃/MoSe₂-I after applying biaxial strain.

Fig. S3. The MAE of Ni₂Cl₃I₃/MoSe₂- III after applying biaxial strain.

D. The planar average of electrostatic potential after applying biaxial strain

Fig. S4. The planar average of electrostatic potential of Ni₂Cl₃I₃/MoSe₂-I and III after applying biaxial strain.

E. The Phonon spectra

Fig. S5. The Phonon spectra of Ni₂Cl₃I₃/MoSe₂-I and III.