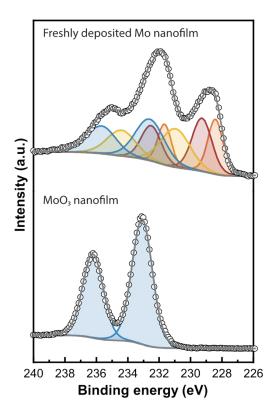
Supporting Information

Large-area grown ultrathin molybdenum oxide for label-free sensitive biomarker detection

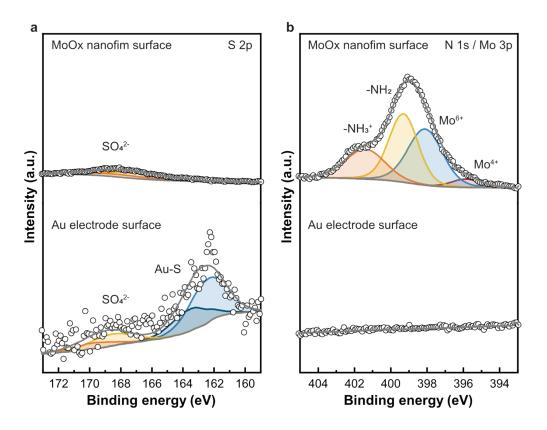
Jiaru Zhang,^a Yange Luan,^a Qijie Ma,^a Yihong Hu,^a Rui Ou,^a Crispin Szydzik,^a Yunyi Yang,^b, Vien Trinh,^a Nam Ha,^a Zhenyue Zhang,^a Guanghui Ren,^a Hu Jun Jia,^c Bao Yue Zhang *^{a,d,} and Jian Zhen Ou*^a

^aSchool of Engineering, RMIT University, Melbourne 3000, Australia

^bSchool of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia


°College of Microelectronics, Xidian University, Xi'an, Shaanxi, 710000, China

^dSchool of Physics and Astronomy, Monash University, Clayton, Victoria, 3800 Australia


Corresponding Author

* Email: baoyue.zhang@rmit.edu.au (B.Y.Z.)

* Email: jianzhen.ou@rmit.edu.au (J.Z.O.)

Figure S1. The XPS spectra of freshly deposited ultrathin Mo film (top) and MoO₃ nanofilm after oxidation process (bottom). The fitted molybdenum metal peaks (228.4 eV and 231.6 eV), Mo⁴⁺ peaks (229.2 eV and 232.4 eV), Mo⁵⁺ peaks (231.0 eV and 234.2 eV), and Mo⁶⁺ peaks (232.7 eV and 235.8 eV) are indicated in the graph.

Figure S2. Comparation of high resolution XPS spectra of MoO_x nanofilm surface (top) and Au electrode surface (bottom) after functionalization with APTES for (a) N 1s; (b) S 2p. The low signal-to-noise ratio of S2p is due to the dual factors of sole S atom in each 1-Dodecanethiol molecule¹ and low concentration (10 mM) of 1-Dodecanethiol molecule incubated in ethanol solution [1, 2].

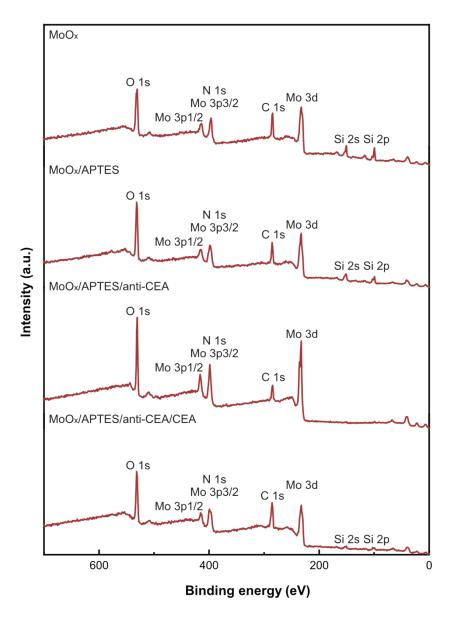


Figure S3. XPS survey for MoO_x, MoO_x/APTES, MoO_x/APTES/anti-CEA, and MoO_x/APTES/anti-CEA/CEA.

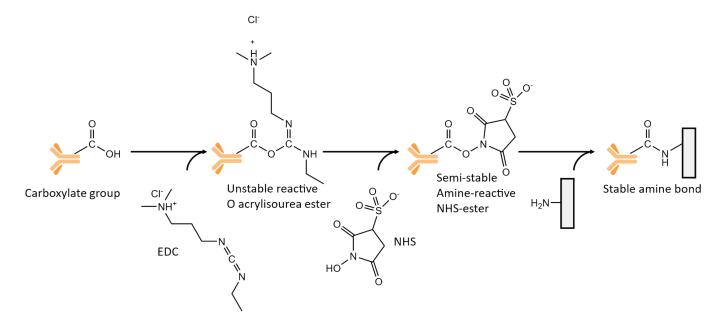


Figure S4. Immobilization of anti-CEA on an amine group functionalized surface mediated by EDC and NHS coupling.

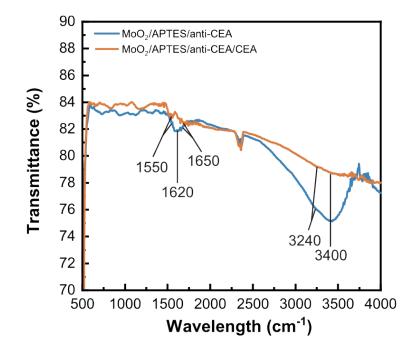


Figure S5. FTIR spectra of MoO_x/APTES/anti-CEA, and MoO_x/APTES/anti-CEA/CEA.

	Ref MoO		MoO _x /APTES/anti-CEA	MoO _x /APTES/anti-CEA/CEA
Mo ⁶⁺ [%]	16.55	25.83	12.94	11.01
Mo ⁵⁺ [%]	28.64	21.77	24.55	25.12
Mo ⁴⁺ [%]	54.80	52.4	62.52	63.87
X	2.31	2.37	2.25	2.24

Table S1. Detailed composition of ultrathin MoO_x film in different functionalization stage calculated from the XPS

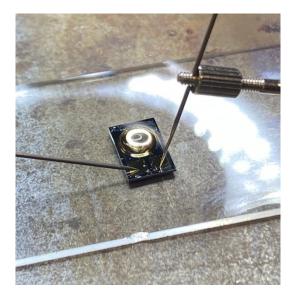


Figure S6. Electrical measurements on the developed MoO_x -IDE biosensing chip with output characteristic at a fixed 0.1 V source voltage.

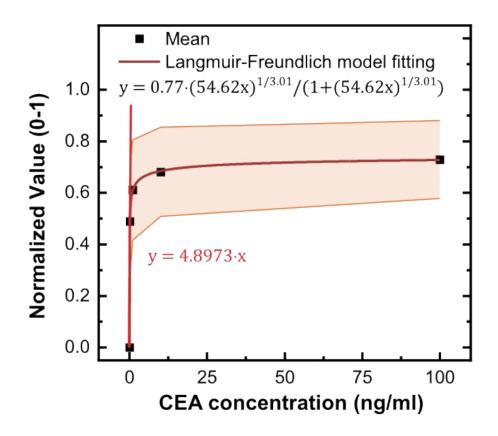


Figure S7. the slope of the linear region of the Langmuir-Freundlich model fitted curve.

Table S2. Comparisons of the sensing performance of developed electronic biosensing chip with other methods for the detection of CEA biomarker.

Device	Detection Type	Linear range (ng/ mL)	Detection limit (ng/ mL)	Reference
anti-CEA/ADA- COOH/APTES/SiO2/IDE	Labeled	0.1 - 1000	0.007	[3]
Si3N4/Au/IDE	Label-free	0.0001 - 10	0.0001	[4]
anti-CEA/PRY-NHS/Graphene/FET	Label-free	0.1 - 100	0.1	[5]
anti-CEA/denatured- BSA/Graphene/FET	Labeled	0.01 - 100	0.00034	[6]
anti-CEA/MoS2-Au/GCE	Labeled	0.001 - 50	0.00027	[7]
Anti-CEA/APTES/MoO _x /IDE	Label-free	0.1-100	0.015	This work

Reference

- 1. Sigma-Aldrich. "1-Dodecanethiol." https://www.sigmaaldrich.com/AU/en/product/aldrich/471364 (accessed 04-05, 2024).
- N. Mahmoodi et al., "Room temperature thermally evaporated thin Au film on Si suitable for application of thiol self-assembled monolayers in micro/nano-electro-mechanical-systems sensors," Journal of Vacuum Science & Technology A, vol. 35, no. 4, 2017.
- 3. Li, X., Yu, M., Chen, Z., Lin, X., and Wu, Q., A sensor for detection of carcinoembryonic antigen based on the polyaniline-Au nanoparticles and gap-based interdigitated electrode. Sens. Actuators, B, 2017, 239, 874-882.
- 4. Jin, Y., Mao, H., Jin, Q., and Zhao, J., Real-time determination of carcinoembryonic antigen by using a contactless electrochemical immunosensor. Analytical Methods, 2016, 8(24), 4861-4866.
- 5. Zhou, L., Mao, H., Wu, C., Tang, L., Wu, Z., Sun, H., Zhang, H., Zhou, H., Jia, C., and Jin, Q., Label-free graphene biosensor targeting cancer molecules based on non-covalent modification. Biosensors and Bioelectronics, 2017, 87, 701-707.
- Zhou, L., Wang, K., Sun, H., Zhao, S., Chen, X., Qian, D., Mao, H., and Zhao, J., Novel graphene biosensor based on the functionalization of multifunctional nano-bovine serum albumin for the highly sensitive detection of cancer biomarkers. Nanomicro letters, 2019, 11(1), 1-13.
- 7. Wang, X., Chu, C., Shen, L., Deng, W., Yan, M., Ge, S., Yu, J., and Song, X., An ultrasensitive electrochemical immunosensor based on the catalytical activity of MoS2-Au composite using Ag nanospheres as labels. Sens. Actuators, B, 2015, 206, 30-36.