Supplementry information

Unveiling the potential of BCN-Biphenylene monolayer as a highperformance anode material for alkali metal ion batteries: A firstprinciples study

Ajay Kumar^a and Prakash Parida^{a*} ^a Department of Physics, Indian Institute of Technology Patna, Bihta, Bihar, India, 801106 *Corresponding author: - pparida@iitp.ac.in

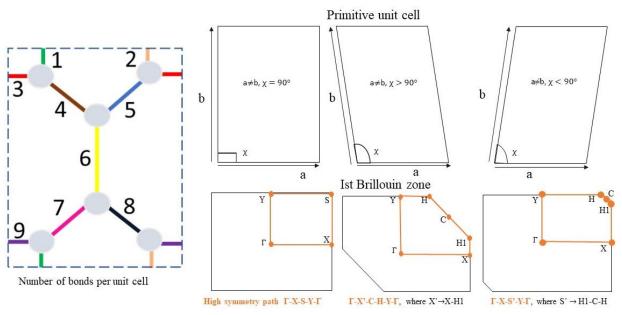


Fig. S1 numbers of bonds per unit cell, primitive unit cell and their corresponding Ist Brillouin zone along with high symmetry path

Table S1 lattice parameters, bond types, bond length and their count in different phases of CBN.

Phases	Lattice angle constant (Å)			Types of Bonds and their counts per unit cell											
x-CBN	а	b	a∠b	B-B (Å)		C-C (Å)		N-N (Å)		C-N (Å)		B-N (Å)		B-C (Å)	
α-BCN	3.82	4.85	90.0°	1	1.68	1	1.38	1	1.42	2	1.43	2	1.43	2	1.52
β-BCN	3.87	4.57	90.0°	1	1.58	1	1.42	1	1.50	2	1.38	2	1.48	2	1.50
γ-BCN	3.92	4.46	90.0°	1	1.60	1	1.45	1	1.42	2	1.38	2	1.43	2	1.53
δ-BCN	3.78	4.86	91.4°	1	1.66	0	-	0	-	4	1.40*	2	1.46	2	1.50
η-BCN	3.86	4.55	92.5°	0	-	1	1.40	0	-	2	1.38	4	1.48*	2	1.53
θ-BCN	3.90	4.47	88.0°	0	-	0	-	1	1.40	2	1.35	2	1.47	4	1.52*
Few bonds with different bond length are marks as *, mention here, C-N(1.42 Å); B-N(1.47 Å); B-C(1.53 Å)															

Table S2 Min. and max. value of Young moduli and Poisson ratio of different phases of CBN.

bpn- BCN	Υ(θ)	(N/m)	ν(θ)			
X-BCN	Min.	Max.	Min.	Max.		
α- BCN	143.93	194.84	0.28	0.42		
β- BCN	170.80	225.62	0.30	0.39		
γ- BCN	191.44	253.76	0.23	0.34		

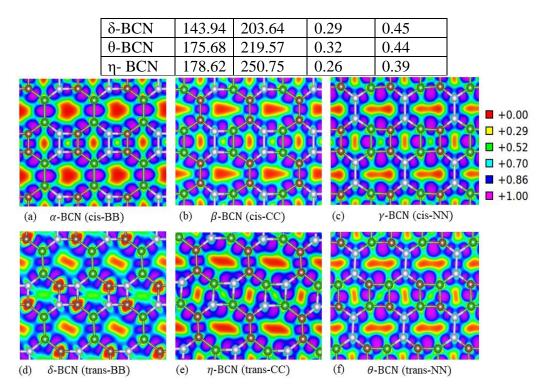
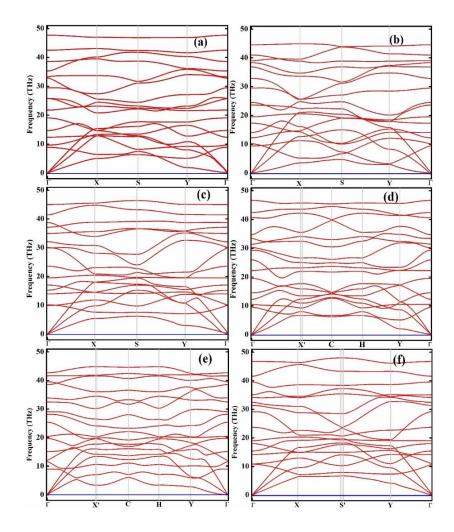
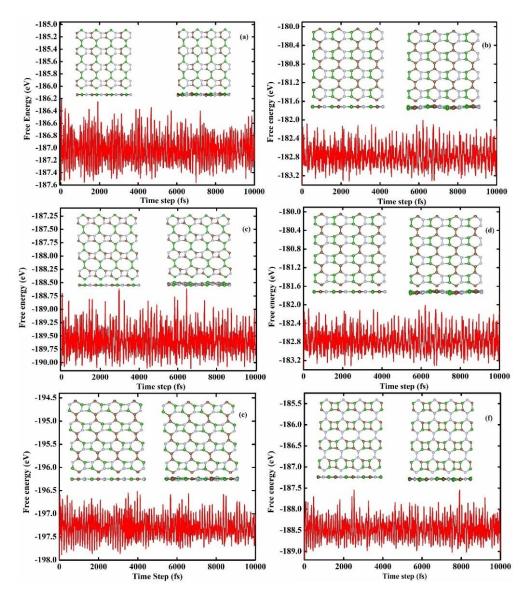




Fig. S2 displays the electron localized function (ELF) of multiple phases of bpn-BCN monolayers with an iso-surface value of 0.4 atomic units.

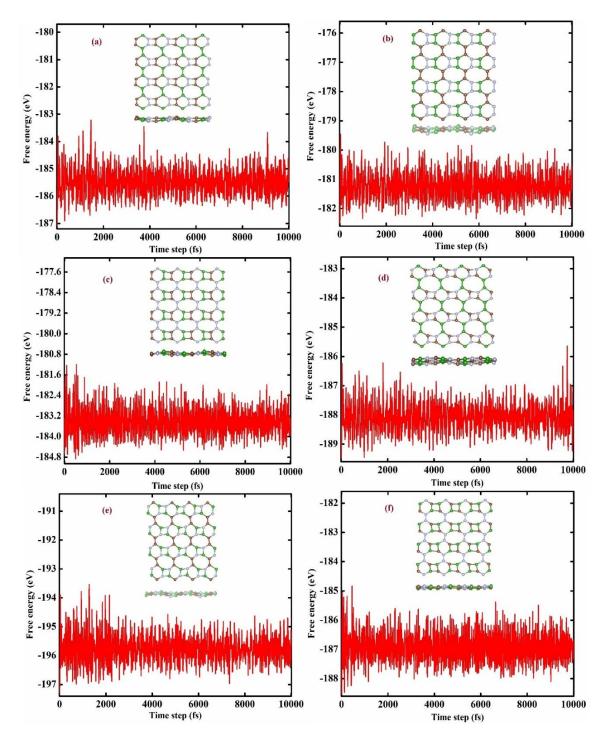


Fig. S3 shows the phonon spectra of different phases of bpn-BCN monolayers; α - BCN, β -BCN, γ -BCN, δ -BCN, η -BCN and θ -BCN are marked in the figure as 'a' to 'f' respectively.

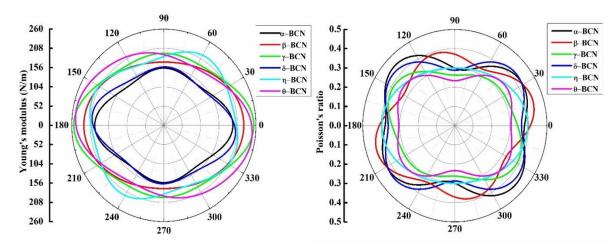


Fig. S4 depicts ab initio molecular dynamics at 300K of different phases of bpn-BCN monolayers; α -BCN, β -BCN, γ -BCN, δ -BCN, η -BCN and θ -BCN are marked in the figure as 'a' to 'f' respectively.

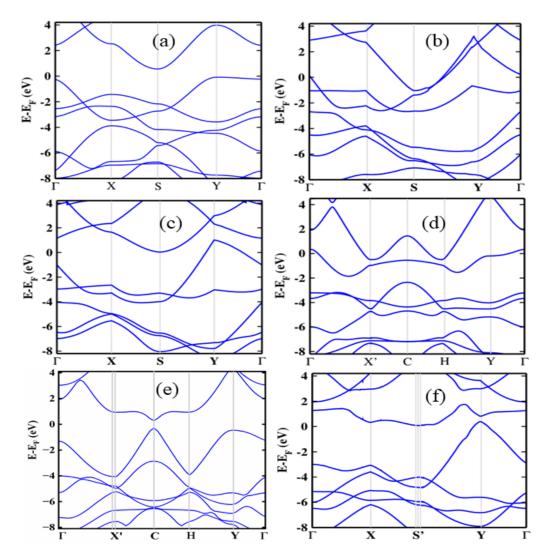

Note:- The energies of isolated single B, C, and N atoms, calculated by placing each atom in a cubic box with a box length of 20 Å, are follows: $E_B = -69.59 \text{ eV}$, $E_C = -144.70 \text{ eV}$, and & $E_N = -261.07 \text{ eV}$. On the other hand, the $\mu_C = -154.86 \text{ eV}$ is the energy of per carbon atom calculated from graphite, a stable carbon allotrope. In the N-rich environment, the energy per atom of the alpha-N₂ phase of solid nitrogen is $\mu_N = -270.22 \text{ eV}$, whereas for the B-rich environment, the energy per atom of a metallic alpha-B phase is $\mu_B = -77.23 \text{ eV}$.

Fig. S5 *ab initio molecular dynamics at 800K, of different phases of bpn-BCN monolayer;* α *-BCN,* β *-BCN,* γ *-BCN,* δ *-BCN,* η *-BCN and* θ *-BCN are marked in the figure as 'a' to 'f' respectively.*

Fig. S6 displays the angular dependence of Young's moduli (left panel) $Y(\Phi)$ and Poisson's ratio (right panel) $v(\Phi)$ of different phases of the bpn-BCN monolayers, where the angle Φ is defined relative to the x-direction.

Fig. S7 The electronic bands structures using HS06 hybrid exchange-correlation functional for different phases of bpn-BCN monolayer; α - BCN, β - BCN, γ - BCN, δ -BCN, η - BCN and θ -BCN are marked in the figure as a, b, c, d, e and f respectively.

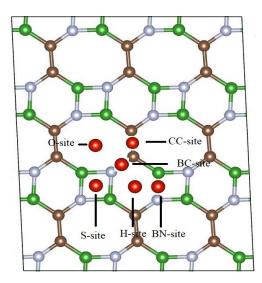
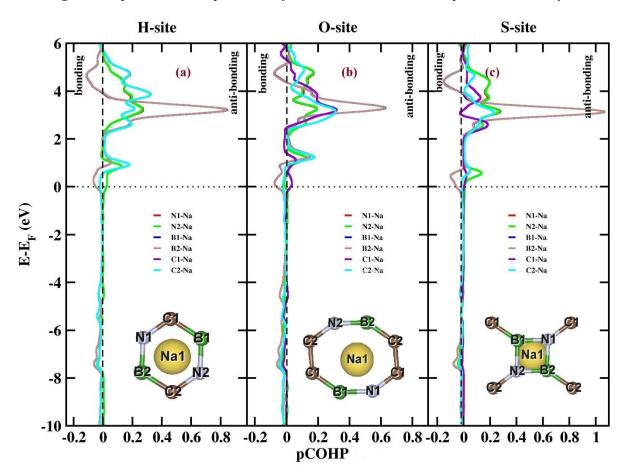
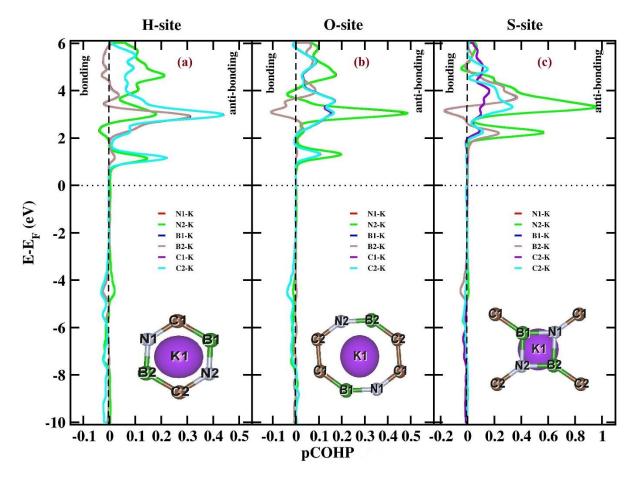




Fig. S8 All possible adsorption sites for alkali metal atoms in bpn-BCN monolayer..

Fig. S9 pCOHP analyses of the chemical bonding between the adsorbed Na atom and constituent atoms of the bpn-BCN monolayer for (a) H-site, (b) O-site, and (c) S-site, respectively.

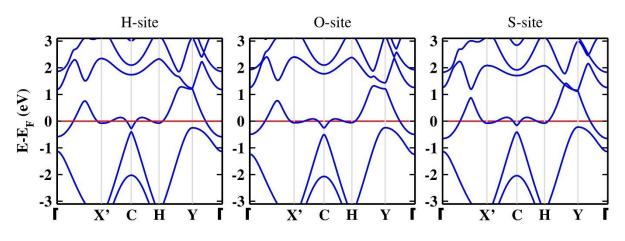
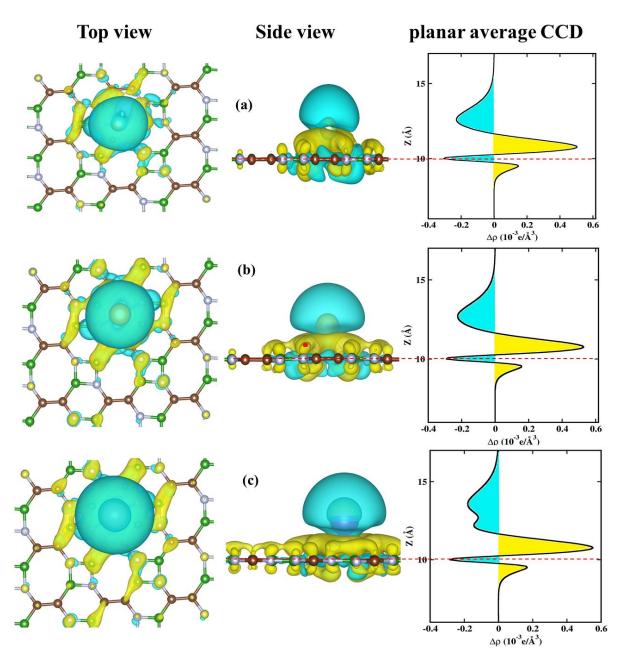

Fig. S10 pCOHP analyses of the chemical bonding between the adsorbed K atom and constituent atoms of the bpn-BCN monolayer for (a) H-site, (b) O-site, and (c) S-site, respectively.

Table S3 ICOHP (eV) values for BCN atoms with all alkali metals at different H-, O-, and Ssites. Please refer to Fig. 5, Fig. S9 and Fig. S10 for labels of B, C, and N atoms.


X=Li,		Li			Na		K			
Na, K	H-site	O-site	S-site	H-site	O-site	S-site	H-site	O-site	S-site	
B1-X	-0.175	-0.171	-0.179	-0.431	0.313	-0.452	-0.284	-0.161	-0.442	
B2-X	-0.187	-0.171	-0.179	-0.434	0.311	-0.431	-0.281	-0.157	-0.446	
C1-X	-0.225	-0.218	-0.089	-0.531	-0.391	-0.220	-0.646	-0.346	-0.383	
C2-X	-0.223	-0.217	-0.097	-0.533	-0.388	-0.224	-0.649	-0.345	-0.372	
N1-X	-0.211	-0.179	-0.200	-0.428	-0.410	-0.436	-0.463	-0.508	-1.053	
N2-X	-0.208	-0.178	-0.200	-0.431	-0.408	-0.431	-0.461	-0.513	-1.055	

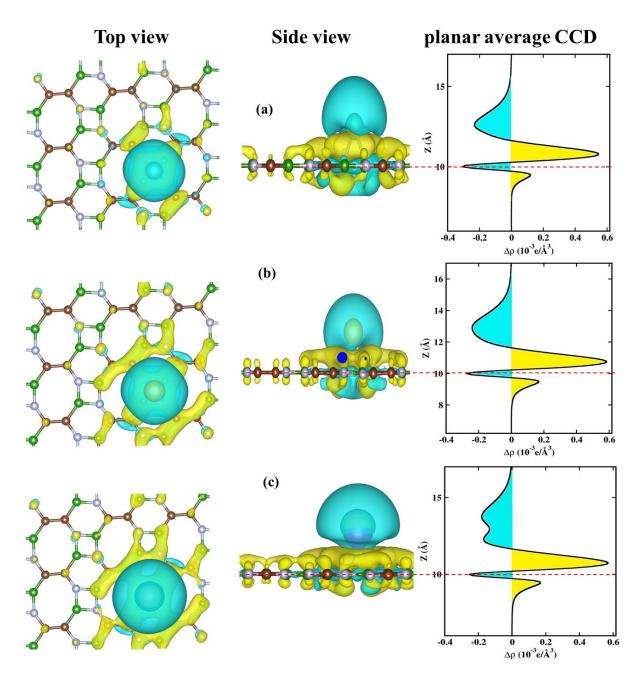

Fig. S11 The electronic band spectra of Na metal absorbed bpn-BCN monolayer at H-Oand S-sites.

Fig. S12 The electronic band spectra of K metal absorbed bpn-BCN monolayer at H- O- and S-sites.

Fig. S13 The top and side view along with average planar electron density difference for (a) Li- (b) Na- and K-metal adsorbed at (a) O-site on the bpn-BCN monolayer with iso-surface value of 0.001 eÅ⁻³.

Fig. S14 The top and side view along with average planar electron density difference for (a) Li- (b) Na- and K-metal adsorbed at (a) S-site on the bpn-BCN monolayer with iso-surface value of 0.001 $e^{A^{-3}}$.