High-Load Nanoparticles with Chemotherapeutic SN-38/FdUMP Drug Cocktail

Kristina Sabljo^a, Myrto Ischyropoulou^b, Joanna Napp^b, Frauke Alves^{b,c,d}, and Claus Feldmann^a*

Dr. K. Sabljo, Prof. Dr. C. Feldmann

^a Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße
 15, 76131 Karlsruhe, Germany. E-mail: claus.feldmann@kit.edu

Dr. M. Ischyropoulou, Priv.-Doz. Dr. J. Napp, Prof. Dr. F. Alves

- ^b University Medical Center Goettingen (UMG), Institute for Diagnostic and Interventional Radiology, Robert Koch Str. 40, 37075 Goettingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Translational Molecular Imaging, City campus, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany. E-mail: falves@gwdg.de
- ^d University Medical Center Goettingen (UMG), Clinic for Haematology and Medical Oncology, Robert Koch Str. 40, 37075 Goettingen, Germany

- SUPPORTING INFORMATION -

Content

- 1. Analytical Equipment
- 2. Material Characterisation [Gd(OH)]²⁺[(SN-38)_{0.5}(UMP)_{0.5}]²⁻ IOH-NPs
- 3. Material Characterisation [Gd(OH)]²⁺[SN-38]²⁻ IOH-NPs

References

1. Analytical Equipment

Scanning electron microscopy (SEM) was carried out with a Zeiss Supra 40 VP (Zeiss, Germany), equipped with a field emission gun (acceleration voltage 5 kV, working distance 3 mm). Samples were prepared by spraying a diluted aqueous suspension of the as-prepared IOH-NPs with a mist maker on a silica wafer that was left for drying overnight.

Energy-dispersive X-ray spectroscopy (EDXS) was performed with an Ametek EDAX device (Ametek, USA) mounted on the above described Zeiss SEM Supra 40 VP scanning electron microscope. For the analysis, the IOH-NPs were dried at 50 °C and thereafter pressed to dense pellets in order to guarantee for a smooth surface and a quasi-infinite layer thickness. These pellets were fixed with conductive carbon pads on aluminium sample holders. An acceleration voltage of 30 kV was used for these measurements.

Dynamic light scattering (DLS) and *zeta potential* measurements were carried out on a Zetasizer Nano-ZS (Malvern, United Kingdom) with a 633 nm laser and backscattering geometry (173°) . For DLS measurements, the aqueous IOH-NP suspensions were diluted 1 : 10 or 1 : 20 with demineralized water. The zeta potential of the as-prepared IOH-NPs was also measured using these diluted aqueous suspensions.

Fourier-transform infrared (FT-IR) spectra were recorded on a Bruker Vertex 70 FT-IR spectrometer (Bruker, Germany) in the range from 4000 to 400 cm⁻¹ with a resolution of 4 cm⁻¹. For this purpose, 1 mg of dried IOH-NPs was pestled with 300 mg of KBr and pressed to a pellet, which thereafter was measured in transmission.

Differential thermal analysis/thermogravimetry (DTA/TG) was performed with a STA409C device (Netzsch, Germany). The measurements were performed in air to guarantee for total combustion of the organic content. The IOH-NPs (20 mg in corundum crucibles), pre-dried at 100 °C for 5 h, were heated to 1200 °C with a rate of 5 K/min.

X-ray diffraction (XRD) measurements of the as-prepared IOH-NPs as well as of the residue after total organic combustion of these IOH-NPs (TG analysis) were performed with a Stadi MP diffractometer (STOE & Cie, Germany) using a Cu-K_{α 1} radiation source (λ = 154.05 pm) and a germanium-(111)-monochromator.

Elemental analysis (EA, C/H/N/S analysis) was performed via thermal combustion with an Elementar Vario Microcube device (Elementar, Germany) at a temperature of 1150 °C. The samples were pre-dried at 100 °C for 5 h to remove the remaining solvent.

Photoluminescence (PL) measurements were performed with a Horiba Jobin Yvon Spex Fluorolog 3 (Horiba Jobin Yvon, France) equipped with a 450 W Xe-lamp and double-grating excitation and emission monochromators.

2. Material Characterisation [Gd(OH)]²⁺[(SN-38)_{0.5}(UMP)_{0.5}]²⁻ IOH-NPs

 $[Gd(OH)]^{2+}[(SN-38)_{0.5}(UMP)_{0.5}]^{2-}$ are used as representatives for drug-cocktail containing $[Gd(OH)]^{2+}[(SN-38)_{0.5}(FdUMP)_{0.5}]^{2-}$. The chemotherapeutic FdUMP differentiates from UMP by a fluorine atom in 5'-position of the uridine unit (instead of hydrogen) and a hydrogen atom (instead a hydroxyl group at the 2' carbon of the ribose unit). FdUMP, however, is by a factor 800× more expansive (i.e., 4,000 € for 100 mg Na₂(FdUMP) but about 5 € for 100 mg Na₂(UMP)). Therefore, all syntheses and characterization were performed with $[Gd(OH)]^{2+}[(SN-38)_{0.5}(UMP)_{0.5}]^{2-}$. $[Gd(OH)]^{2+}[(SN-38)_{0.5}(FdUMP)_{0.5}]^{2-}$ was only used to perform the *in vitro* experiments. In terms of a characterization of the particle size and chemical composition, $[Gd(OH)]^{2+}[(SN-38)_{0.5}(UMP)_{0.5}]^{2-}$ and $[Gd(OH)]^{2+}[(SN-38)_{0.5}(FdUMP)_{0.5}]^{2-}$ can be considered to be similar (except for fluorine and hydroxyl group).

Energy dispersive X-ray spectroscopy (EDXS) of the $[Gd(OH)]^{2+}[(SN-38)_{0.5}(UMP)_{0.5}]^{2-}$ IOH-NPs qualitatively proves the presence of gadolinium and phosphorus (Figure S1).

Figure S1. EDX analysis of [Gd(OH)]²⁺[(SN-38)_{0.5}(UMP)_{0.5}]²⁻ IOH-NPs.

Total organics combustion of the $[Gd(OH)]^{2+}[(SN-38)_{0.5}(UMP)_{0.5}]^{2-}$ IOH-NPs was performed by thermogravimetry (TG) (Figure S2a; *see main paper: Table 1*). The thermal decomposition of the IOH-NPs can be rationalized based on the following reaction:

 $2 \ [Gd(OH)]^{2+} [(C_{22}H_{20}N_2O_6)_{0.5}(C_9H_{11}N_2O_9P)_{0.5}]^{2-} + 4152.5 \ O_2 \rightarrow 2.5 \ GdPO_4 + 2.5 \ Gd_3PO_7 + 82.5 \ H_2O + 155 \ CO_2 + 10 \ N_2$

The presence of Gd_3PO_7 and $GdPO_4$ as remnants of the thermal decomposition was evidenced by X-ray powder diffraction (XRD) (Figure S2b).

Figure S2. Thermal properties of $[Gd(OH)]^{2+}[(SN-38)_{0.5}(UMP)_{0.5}]^{2-}$ IOH-NPs: a) TG; b) XRD of the thermal remnant after TG analysis $(Gd_3PO_7/ICDD-No.\ 00-034-1066,\ GdPO_4/00-032-0386$ as references).

3. Material Characterisation [Gd(OH)]²⁺[SN-38]²⁻ IOH-NPs

SN-38 is known for its reversible pH-dependent equilibrium between the therapeutically active lactone form and the inactive carboxylate form in aqueous to alkaline solution (pH \geq 7) (Figure S3).^{S1} In contrast to the closed lactone form, the open carboxylate form is soluble in water starting at a pH of 8. In order to verify the formation of IOH-NPs with SN-38, $[Gd(OH)]^{2+}[SN-38]^{2-}$ IOH-NPs with only SN-38 as an anion were prepared and analysed in addition to the $[Gd(OH)]^{2+}[(SN-38)_{0.5}(UMP)_{0.5}]^{2-}$ IOH-NPs.

Figure S3. Molecular structure of SN-38 with pH-dependent equilibrium.

Particle size, size distribution and colloidal stability of the $[Gd(OH)]^{2+}[SN-38]^{2-}$ IOH-NPs IOH-NPs were characterized by dynamic light scattering (DLS) and scanning electron microscopy (SEM). DLS of suspensions in diethylene glycol indicates a mean hydrodynamic diameter of 51 ± 14 nm (Figure S4a). DEG was here used as a polar solvent, showing less extensive hydrogen bridging than water. As a result, the hydrodynamic diameters originating from DLS is much more comparable to the mean diameter stemming from electron microscopy. SEM confirms the presence of spherical particles with a mean diameter of 38 ± 4 nm (based on statistical evaluation of > 100 nanoparticles on SEM images) (Figure S4a,b).

Figure S4. Particle features of [Gd(OH)]²⁺[SN-38]²⁻ IOH-NPs: a) particle size and size distribution according to DLS (in DEG) and SEM; b) SEM overview image.

EDXS of the [Gd(OH)]²⁺[SN-38]²⁻ IOH-NPs qualitatively proves the presence of gadolinium (Figure S5).

Figure S5. EDX analysis of [Gd(OH)]²⁺[SN-38]²⁻ IOH-NPs.

Figure S6. FT-IR spectrum of [Gd(OH)]²⁺[SN-38]²⁻ IOH-NPs (with pure SN-38 as reference).

The presence of SN-38 in the $[Gd(OH)]^{2+}[SN-38]^{2-}$ IOH-NPs is validated by Fouriertransform infrared (FT-IR) spectroscopy. Thus, the observed vibrations are similar to pure SN-38 as a reference (Figure S6). In comparison to the fine-splitted vibrations of pure SN-38, the IOH-NPs show broader vibrations, enveloping the fine-splitted vibrations of pure SN-38. This finding can be ascribed to non-crystallinity of the IOH-NPs and a great number of individual anions whose vibrational energy is slightly different to each other (Figure S6). Especially, the most intense vibration of pure SN-38 (1735 cm⁻¹) should be noticed as it indicates the lactone ring in its closed form. This vibration vanishes almost completely for the IOH-NPs and proves the presence of the open carboxylate form in the IOH-NPs (Figure S6). In contrast, the most intense vibration of the $[Gd(OH)]^{2+}[SN-38]^{2-}$ IOH-NPs is observed at 1585 cm⁻¹ and can be assigned to ν (COO) of the open carboxylate form. Moreover, vibrations at 3500-3000 (ν (O–H)) and 2970-2850 cm⁻¹ (ν = (C–H)) as well as the fingerprint area < 1500 cm⁻¹) of the [Gd(OH)]²⁺[SN-38]^{2–} IOH-NPs are well in agreement with the reference spectrum.

In addition to the qualitative analysis of the presence of Gd^{3+} (EDX) and [SN-38]²⁻ (FT-IR), the chemical composition of the $[Gd(OH)]^{2+}[SN-38]^{2-}$ IOH-NPs was quantified by elemental analysis (EA) and total-organics combustion via thermogravimetry (TG). A comparison of the experimental and calculated values indicates the experimental N/C/H values and the total-organics combustion to be systematically too low (Table S1). Here, it must be taken into account that the nucleation of $[Gd(OH)]^{2+}[SN-38]^{2-}$ was performed with slightly alkaline conditions (pH = 8) In order to keep SN-38 in its open carboxylate form. This also results in a deprotonation of the phenol group of SN-38, leading to the divalent anion $[SN-38]^{2-}$. Because of the alkaline conditions, however, certain amount of $Gd(OH)_3$ can be formed as well, which is the reason for the reduced amount of SN-38 in the IOH-NPs. Based on an co-precipitation of $[Gd(OH)]^{2+}[SN-38]^{2-}$ with 13 wt-% of $Gd(OH)_3$, the experimental results of EA and TG are in good accordance with the calculated values (Table S1, Figure S7a). Total organics combustion can be rationalized based on the following reaction:

 $2 \ [Gd(OH)]^{2+} [C_{22}H_{20}N_2O_6]^{2-} + 49 \ O_2 \rightarrow 2 \ Gd_2O_3 + 44 \ CO_2 + 21 \ H_2O + 2 \ N_2$ The presence of Gd₂O₃ as the thermal remnant was evidenced by XRD (Figure S7b).

In contrast to the $[Gd(OH)]^{2+}[SN-38]^{2-}$ IOH-NPs, no co-precipitation of $Gd(OH)_3$ was observed for $[Gd(OH)]^{2+}[(SN-38)_{0.5}(UMP)_{0.5}]^{2-}$ IOH-NPs (*see main paper: Table 1*), which can be ascribed to the additional presence of the phosphate-functionalized $[UMP]^{2-}$ forming a stronger bond and less soluble compound with Gd^{3+} than OH^{-} .

Table S1. Composition of the as-prepared IOH-NPs with 83 % [Gd(OH)]²⁺[SN-38]²⁻ and 13 % Gd(OH)₃ according to EA and TG.

	EA contents			TG mass loss
	N / wt-%	C / wt-%	H / wt-%	Weight loss / wt-%
Experimental	3.4	34.7	3.2	64.5
(corrected for 13 wt-% $Gd(OH)_3$)	4.5	39.2	3.6	72.8
Calculated	4.8	45.4	3.4	68.9

Figure S7. Thermal properties of $[Gd(OH)]^{2+}[SN-38]^{2-}$ IOH-NPs: a) TG, b) XRD of the thermal remnant after TG analysis (Gd₂O₃ ICDD-No. 00-021-0797 as a reference).

Optical spectroscopy (UV-Vis) of the $[Gd(OH)]^{2+}[SN-38]^{2-}$ IOH-NPs further confirms the presence of SN-38 in the open carboxylate form. Thus, the characteristic absorption below 450 nm is observed for the IOH-NPs as well as for alkaline solutions of SN-38 (pH = 8) (Figure S8). Especially the absorptions at 335 and 410 nm are characteristic of the open carboxylate form of SN-38.^{S2} These absorptions are also in accordance with the yellowish colour of the $[Gd(OH)]^{2+}[SN-38]^{2-}$ IOH-NPs as well as of alkaline solutions of SN-38.

Figure S8. UV-Vis spectrum of [Gd(OH)]²⁺[SN-38]²⁻ IOH-NPs (solution of SN-38 at pH 8 as a reference).

Similar to the $[Gd(OH)]^{2+}[(SN-38)_{0.5}(FdUMP)_{0.5}]^{2-}$ IOH-NPs (*see main paper: Figure 3b*), the $[Gd(OH)]^{2+}[SN-38]^{2-}$ IOH-NPs can be fluorescence-labelled by addition of minor amounts

(0.01 mol-%) of Dyomics DY-549-dUTP (DUT549). These DUT549-labelled $[Gd(OH)]^{2+}[SN-38]^{2-}$ IOH-NPs show red emission at 570-700 nm ($\lambda_{max} = 585$ nm) upon excitation at 460-570 nm, which is similar to pure DUT549 in solution as a reference (Figure S9a). In addition, it should be noticed that SN-38 also shows emission itself (Figure S9b). Thus, $[Gd(OH)]^{2+}[SN-38]^{2-}$ IOH-NPs also show greenish emission at 500-650 nm ($\lambda_{max} = 560$ nm) upon excitation at 400-500 nm, which is similar to pure SN-38 in alkaline solution as a reference.^{S3}

Figure S9. Fluorescence spectra of DUT549-labelled [Gd(OH)]²⁺[SN-38]²⁻ IOH-NPs: a) with free DUT549 as a reference ($\lambda_{ex} = 550 \text{ nm}$, $\lambda_{em} = 585 \text{ nm}$), b) with SN-38 solution at pH = 8 as a reference ($\lambda_{ex} = 475 \text{ nm}$, $\lambda_{em} = 560 \text{ nm}$).

References

- S1 (a) Z. Mi and T. G. Burke, *Biochem.*, *1994*, **33**, 12540. (b) J. A. Zhang, T. Xuan, M.
 Parmar, L. Ma, S. Ugwu, S. Ali and I. Ahmad, *Internat. J. Pharm.*, 2004, **270**, 93.
- S2 I. Nabiev, F. Fleury, I. Kudelina, Y. Pommier, F. Charton, J.-F. Riou, A. J. Alix and M. Manfait, *Biochem. Pharmacol.*, 1998, 55, 1163.
- S3 L. A. Serrano, Y. Yang, E. Salvati, F. Stellacci, S. Krol and S. Guldin, *Chem. Comm.*, 2018, 54, 1485.