Supplementary Information (SI) for Nanoscale. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information (ESI): Magnetic clusters as efficient EY-like spin-scattering centre in graphene

Wout Keijers^{1*}, Ramasamy Murugesan², Guillaume Libeert¹, Bart Raes³, Steven Brems³, Stefan De Gendt³, Michel Houssa^{2,3}, Ewald Janssens¹, Joris Van de Vondel^{1*}

¹Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, Leuven, B-3001, Belgium.
²Semiconductor Physics Laboratory, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, Leuven, B-3001, Belgium.
³IMEC, Kapeldreef 75, Leuven, B-3001, Belgium.

1 Dependence of the computed quantities on the Ni_4 cluster density

To check that the difference in cluster density between the theory and experiment does not affect our conclusions, we performed additional simulations by varying the graphene supercell sizes: 4×4 (corresponding to a density of $11.8 \cdot 10^{13} \text{ cm}^{-2}$), 6×6 $(5.3 \cdot 10^{13} \text{ cm}^{-2})$ and 7×7 $(3.9 \cdot 10^{13} \text{ cm}^{-2})$; their respective band structures are plotted in Fig S1. From this figure, it can be clearly seen that by increasing or decreasing the cluster density, the Ni₄ cluster always tranfer electrons to graphene (n-type doping), as observed from the shift of the Fermi level above the Dirac point. The calculated doping efficiency was found to be 0.064 e/cluster (4×4) , 0.093 e/cluster 6×6) and 0.11 e/cluster (7×7) , respectively. The estimated doping efficiency varies within the range of ± 0.02 from the values provided in the main text for the (5×5) supercell, which is 0.09 e/cluster. Similarly the average valence band spin splittings are found to be 23.5 meV (4×4) , 17.1 meV (6×6) and 10.2 meV (7×7) . Though the values vary slightly with the cluster density (which is similar to observations for small gold clusters in [1], the splittings of the valence band

1

are consistently larger than the conduction band ones accross all the simulated cluster densities, thereby maintaining a similar trend. Therefore, the variation in cluster densities should not drastically affect the main conclusions drawn in this work.

Fig. 1 Simulated non-collinear electronic structure of the Ni₄ cluster adsorbed on graphene for varying supercell sizes: (a) 4×4 (cluster density of $11.8 \cdot 10^{13} \text{ cm}^{-2}$), (b) 6×6 ($5.3 \cdot 10^{13} \text{ cm}^{-2}$) and (c) 7×7 ($3.9 \cdot 10^{13} \text{ cm}^{-2}$). In the case of the 6×6 supercell (multiple of 3n), the K and (K') points are folded to the Γ point of graphene.

Acknowledgements. This work is supported by the Research Foundation-Flanders (FWO, Belgium), Grant No. G0D5619N

References

 Keijers, W., Murugesan, R., Libeert, G., Scheerder, J.E., Raes, B., Brems, S., Gendt, S.D., Houssa, M., Janssens, E., Vondel, J.V.: Tuning the spintronic properties of graphene with atomically precise au clusters. Journal of Physics: Materials 4(4), 045005 (2021)