SUPPLEMENTARY INFORMATION FOR

Atomistic Understanding of Enhanced Selectivity in Photocatalytic Oxidation of Benzyl Alcohol to Benzaldehyde Using Graphitic Carbon Nitride Loaded with Single Copper Atoms

A. Determination of photocatalytic performance

The photocatalytic performance, i.e., BA conversion, BAL yield, and BAL selectivity, was calculated using the following equations.

Conversion (%) =
$$\left(\frac{C_0 - C_r}{C_0}\right) \times 100$$
 (1)

Yield (%) =
$$\left(\frac{C_p}{C_0}\right) \times 100$$
 (2)

Selectivity (%) =
$$\left(\frac{C_p}{C_0 - C_r}\right) \times 100$$
 (3)

Aromatic balance (%) =
$$\left(\frac{C_r + C_p}{C_0}\right) \times 100$$
 (4)

where C_0 is the initial BA concentration (mmol L⁻¹). C_r and C_p are the concentration of reactant (BA) and product (BAL) when sampling, respectively.

B. Experimental results

Figure S1. EDS spectra of (A) 3Cu-CN and (B) 6Cu-CN.

Figure S2. (A) DR spectra, (B) Tauc's plots, and (C) XRD patterns with the structural assignment of the diffraction peaks of (a) CN, (b) 3Cu-CN, and (c) 6Cu-CN.

Figure S3. PL spectra of (a) CN, (b) 3Cu-CN, and (c) 6Cu-CN.

Figure S4. XPS spectra of CN at (a) C 1s and (d) N 1s regions, 3Cu-CN at (b) C 1s, (e) N 1s, and (g) Cu 2p3/2, and 6Cu-CN at (c) C 1s, (f) N 1s, and (h) Cu 2p3/2 regions.

Figure S5. (A) UV-Vis absorption and (B) gas chromatogram of fresh acetonitrile and after being exposed to visible light for 3 h without photocatalyst. Chromatograms of the reaction medium after 3 h of light irradiation with Cu-CN samples, where BAL is the only reaction product present, are also shown.

Figure S6. N_2 adsorption–desorption isotherms of (A) CN, (B) 3Cu-CN, and (C) 6Cu-CN. The insets are the corresponding pore-size distribution curves.

Figure S7. (A) UV-Vis absorption intensity of different standard concentrations of H_2O_2 determined using the iodometric method. (B) Linear fitting for standard H_2O_2 concentrations. (C) UV-Vis absorption spectra for (a) CN, (b) 3Cu-CN, (c) 6Cu-CN, and (d) BA in acetonitrile under light exposure without photocatalyst.

Figure S8. TEM images of 6Cu-CN.

Figure S9. XRD patterns of (a) Cu₂O and (b) CuO.

Figure S10. Proposed structure of a heptazine-based layer with low-coordinated Cu⁺ cations in 3Cu-CN. Based on the AIMD simulation, the gCN layer is not planar at 27 °C but irregularly curved, making its cavities (and thus the length of the Cu-N coordination) unsymmetrical and the Cu-N coordination to exist in more than one configuration.

Catalyst	Precursor ^a	SBET	Con.	Light source	<i>t</i> (h)	T (°C)	BA con. (mmol L ⁻¹)	BA conv.	BAL sel.	Yield-to-Power ratio	Ref.
		(m ² g ⁻¹)	(g L ⁻¹)	-	• •	~ ,		(%)	(%) ^b	(mmol BAL g ⁻¹ h ⁻¹ W ⁻¹)	
P-gC₃N₄	Melamine	4	0.33	Fluorescent lamps (3 ×15 W, 340-	4	25	500 (acetonitrile)	5	52	0.21	[1]
P-gC ₃ N₄	Urea	16		420 nm)				4	45	0.15	
P-gC ₃ N₄	Thiourea	28						3	36	0.09	
Pt@gC₃N₄	Melamine	6	0.625	Xe lamp (200 W, ≥420 nm,	5	n.a.	10 (water)	27	90	<0.01	[2]
P/gC ₃ N ₄	Urea	n.a.	2	LED lamp (64 W, 465 nm)	10	25	50 (acetonitrile, O ₂)	96	>99	0.04	[3]
gC ₃ N ₄	Melamine	n.a.	0.67	Fluorescent lamps (6 × 15 W, 315-400 nm)	4	25	0.5 (water)	29	88	<0.01	[4]
gC₃N₄	Cyanamide	130	2.5	Xe lamp (300 W, >420 nm)	3	100	40 (water, 0.8 MPa O ₂)	10	96	<0.01	[5]
CdS/gC₃N₄	Melamine	7	6.67	Xe lamp (300 W, >420 nm)	4	60	25.5 (benzotrifluoride, 0.5 MPa N ₂)	48	93	<0.01	[6]
S-gC ₃ N ₄	Dicyandiamide	66	5	Xe lamp (300 W, >420 nm)	4	100	100 (trifluorotoluene, 0.1 MPa O ₂)	19	>99	<0.01	[7]
gC ₃ N ₄	Cyanamide	200	5	Xe lamp (300 W, >420 nm)	3	100	100 (acetonitrile, 0.8 MPa O ₂)	70	68	0.01	[8]
NHPI/gC ₃ N ₄ *	Cyanamide	n.a.	10	W-filament bulb (250 W, >420 nm)	22	25	500 (toluene, 5 mL min ⁻¹ O ₂)	89	94	<0.01	[9]
gC₃N₄	Melamine	n.a.	3.75	Hg lamp (100 W, >400 nm)	3	25	25 (water, O ₂)	96	82	0.02	[10]
gC3N4	Melamine	43	1.67	LED lamps (18 × 1 W, 395 nm)	5	20	2 (acetonitrile)	77	87	<0.01	[11]
gC₃N₄	Urea	53						85	85	<0.01	
Fe@gC₃N₄	Melamine	n.a.	2.5	LED lamp (18 W, >400 nm)	3	25	200 (acetonitrile, 3 mL H ₂ O ₂)	93	>99	1.36	[12]
MIL/Ag/gC ₃ N ₄	Melamine	101	0.83	Xe lamp (500 W, >400 nm)	6	25	33.4 (water, O ₂)	47	97	<0.01	[13]
TiO ₂ /gC ₃ N ₄	Urea	68	2.5	Xe lamp (400 W, >400 nm)	4	50	100 (acetonitrile, O ₂)	42	>99	0.01	[14]
Ru@B-gC₃N₄	Melamine	2.5	0.5	UVA lamp (2×18 W, 365 nm)	3	20	0.5 (water)	83	57	<0.01	[15]
Fe ₂ O ₃ /gC ₃ N ₄	Melamine	27	1	Hg lamp (125 W, 365 nm)	4	30	100 (acetonitrile, 25 mL min ⁻¹ O ₂)	20	34	0.01	[16]
ZnO/gC₃N₄	Melamine	10						9	26	<0.01	
Cu@gC₃N₄	Dicyandiamide	13	0.5	LED lamp (0.45 W, 465 nm)	3	25	1 (acetonitrile)	25	96	0.35	This
											work

*N-hydroxyphthalimide (NHPI). ^aPrecursor for the gC₃N₄. ^bSelectivity to BAL. ^cNot available.

Dhataaatalyat	Cuele			DAL and (0/)
Photocatalyst	Cycle	BA CONV. (%)	BAL yield (%)	BAL Sel. (%)
CN	1	15	3	20
	2	16	3	19
	3	15	2	13
	4	13	2	15
Stored for 8 mc	onths	18	3	17
3Cu-CN	1	25	24	96
	2	24	22	92
	3	25	24	96
	4	28	25	90
Stored for 8 mc	onths	28	26	93
6Cu-CN	1	21	17	81
	2	20	16	80
	3	20	17	85
	4	18	14	78
Stored for 8 mc	onths	20	16	80

Table S2. Recycling tests for the BA oxidation

Reaction conditions: BA (1 mmol L⁻¹, 0.01 mmol), photocatalyst (0.5 g L⁻¹, 5 mg), and reaction time (3 h).

Table S3. Partial oxidation of BA over CN in the presence of scavenge	ers
---	-----

		•	•
Scavenger	BA conv. (%)	BAL yield (%)	BAL sel. (%)
none	15	3	20
AgNO₃	13	2	15
Na ₂ SO ₄	12	2	17
KI	14	2	14
BQ	10	1	10
<i>t</i> -butanol	15	3	20
B B			N I I I I I

Reaction conditions: BA (1 mmol L⁻¹, 0.01 mmol), scavenger (5 mmol L⁻¹, 0.05 mmol), photocatalyst (0.5 g L⁻¹, 5 mg), and reaction time (3 h).

Table S4. F	Partial oxidation	of BA over 3Cu	-CN in the	presence of	scavengers
-------------	-------------------	----------------	------------	-------------	------------

		•	•
Scavenger	BA conv. (%)	BAL yield (%)	BAL sel. (%)
none	25	24	96
AgNO ₃	18	15	83
Na ₂ SO ₄	22	18	82
KI	13	10	77
BQ	20	16	80
<i>t</i> -butanol	24	22	92

Reaction conditions: BA (1 mmol L⁻¹, 0.01 mmol), scavenger (5 mmol L⁻¹, 0.05 mmol), photocatalyst (0.5 g L⁻¹, 5 mg), and reaction time (3 h).

	Table S5.	Partial oxida	tion of BA ove	r 6Cu-CN in the	presence of	f scavengers
--	-----------	---------------	----------------	-----------------	-------------	--------------

			•
Scavenger	BA conv. (%)	BAL yield (%)	BAL sel. (%)
none	21	17	81
AgNO₃	16	11	69
Na ₂ SO ₄	19	14	73
KI	18	12	67
BQ	18	13	72
<i>t</i> -butanol	20	16	80

Reaction conditions: BA (1 mmol L⁻¹, 0.01 mmol), scavenger (5 mmol L⁻¹, 0.05 mmol), photocatalyst (0.5 g L⁻¹, 5 mg), and reaction time (3 h).

Scavenger	Photocatalyst	BA conv. (%)	BAL yield (%)	BAL sel. (%)			
none	CN	15	3	20			
	3Cu-CN	25	24	96			
	6Cu-CN	21	17	81			
KI	CN	14	2	14			
	3Cu-CN	13	10	77			
	6Cu-CN	18	12	67			
TEMPO	CN	12	2	17			
	3Cu-CN	7	6	85			
	6Cu-CN	7	5	71			
OA	CN	13	2	15			
	3Cu-CN	14	13	93			
	6Cu-CN	15	12	80			

	Table S6.	Partial	oxidation	of BA in	the p	oresence	of hole	scavengers
--	-----------	---------	-----------	----------	-------	----------	---------	------------

Reaction conditions: BA (1 mmol L⁻¹, 0.01 mmol), scavenger (5 mmol L⁻¹, 0.05 mmol), photocatalyst (0.5 g L⁻¹, 5 mg), and reaction time (3 h).

Table S7. Partial oxidation of BA over 3Cu-CN with different reaction conditions

Scavenger(s)	Concentration (mmol L ⁻¹)	BA conv. (%)	BAL yield (%)	BAL sel. (%)
BQ	0	25	24	96
	0 (O ₂ flow, 25 mL min ⁻¹ , 1 h)	30	26	87
	0 (Ultrasonic degassing, 0.5 h,	19	16	84
	followed by Ar flow, 25 mL min ⁻¹ , 1 h)			
	2	21	17	81
	4	19	17	89
	8	16	14	87
BQ + KI	4 + 4	3	0	0
BQ + TEMPO	4 + 4	0	0	0
BQ + OA	4 + 4	6	4	67
<u>BQ + OA</u>	4+4	6	4	67

Reaction conditions: BA (1 mmol L⁻¹, 0.01 mmol), photocatalyst (0.5 g L⁻¹, 5 mg), and reaction time (3 h).

Table S8. ⊦	H_2O_2 production	determined based	on the iodometric	method [17-19]
-------------	---------------------	------------------	-------------------	----------------

$H_2O_2 + 3I^- + 2H^+ \rightarrow I_3^- + 2H_2O$						
	Photocatalyst	H ₂ O ₂ (µM h ⁻¹)	Yield-to-Power ratio (mmol g ⁻¹ h ⁻¹ W ⁻¹)	Ref.		
No light	CN	0	0			
No catalyst	-	2	1			
	CN	13	9			
	3Cu-CN	25	17			
	6Cu-CN	16	11			
	Ni-CN	342	236	[17]		

Reaction conditions: BA (1 mmol L⁻¹, 0.01 mmol), photocatalyst (0.5 g L⁻¹, 5 mg), visible light 300 mW at 465 nm, and reaction time (3 h).

References

- 1. Bellardita M, García-López EI, Marcì G, Krivtsov I, García JR, Palmisano L: **Selective photocatalytic oxidation of aromatic alcohols in water by using P-doped g-C**₃N₄. *Applied Catalysis B: Environmental* 2018, **220**:222-233.
- Huo T, Deng Q, Yu F, Wang G, Xia Y, Li H, Hou W: Ion-Induced Synthesis of Crystalline Carbon Nitride Ultrathin Nanosheets from Mesoporous Melon for Efficient Photocatalytic Hydrogen Evolution with Synchronous Highly Selective Oxidation of Benzyl Alcohol. ACS Applied Materials & Interfaces 2022, 14(11):13419-13430.

- 3. Pahari SK, Doong R-A: **Few-layered phosphorene–graphitic carbon nitride nanoheterostructure as a metal-free photocatalyst for aerobic oxidation of benzyl alcohol and toluene**. *ACS Sustainable Chemistry & Engineering* 2020, **8**(35):13342-13351.
- Krivtsov I, Ilkaeva M, García-López EI, Marcì G, Palmisano L, Bartashevich E, Grigoreva E, Matveeva K, Díaz E, Ordóñez S: Effect of substituents on partial photocatalytic oxidation of aromatic alcohols assisted by polymeric C₃N₄. *ChemCatChem* 2019, 11(11):2713-2724.
- 5. Long B, Ding Z, Wang X: Carbon nitride for the selective oxidation of aromatic alcohols in water under visible light. *ChemSusChem* 2013, 6(11):2074-2078.
- 6. Dai X, Xie M, Meng S, Fu X, Chen S: Coupled systems for selective oxidation of aromatic alcohols to aldehydes and reduction of nitrobenzene into aniline using CdS/g-C₃N₄ photocatalyst under visible light irradiation. *Applied Catalysis B: Environmental* 2014, **158**:382-390.
- Zhang L, Liu D, Guan J, Chen X, Guo X, Zhao F, Hou T, Mu X: Metal-free g-C₃N₄ photocatalyst by sulfuric acid activation for selective aerobic oxidation of benzyl alcohol under visible light. *Materials Research Bulletin* 2014, 59:84-92.
- 8. Su F, Mathew SC, Lipner G, Fu X, Antonietti M, Blechert S, Wang X: mpg-C₃N₄catalyzed selective oxidation of alcohols using O₂ and visible light. *Journal of the American Chemical Society* 2010, **132**(46):16299-16301.
- 9. Zhang P, Deng J, Mao J, Li H, Wang Y: Selective aerobic oxidation of alcohols by a mesoporous graphitic carbon nitride/N-hydroxyphthalimide system under visiblelight illumination at room temperature. *Chinese Journal of Catalysis* 2015, 36(9):1580-1586.
- 10. Shvalagin V, Kompanets M, Kutsenko O, Kuchmy SY, Skoryk M: Photocatalytic Activity of gC₃N₄ in the Partial Oxidation of Benzyl Alcohol Under Visible Light. *Theoretical and Experimental Chemistry* 2020, **56**:111-116.
- 11. Morozov R, Golovin M, Uchaev D, Fakhrutdinov A, Gavrilyak M, Arkhipushkin I, Boronin V, Korshunov V, Podgornov F, Taydakov I: **Polytriazine imide-LiCl semiconductor for highly efficient photooxidation of benzyl alcohol to benzaldehyde**. *Journal of Chemical Sciences* 2021, **133**:1-17.
- 12. Devi M, Ganguly S, Bhuyan B, Dhar SS, Vadivel S: **A novel [Fe (acac)3] interspersed** g-C₃N₄ heterostructure for environmentally benign visible-light-driven oxidation of alcohols. *European Journal of Inorganic Chemistry* 2018, **2018**(44):4819-4825.
- 13. Yang Z, Xu X, Liang X, Lei C, Cui Y, Wu W, Yang Y, Zhang Z, Lei Z: Construction of heterostructured MIL-125/Ag/g-C₃N₄ nanocomposite as an efficient bifunctional visible light photocatalyst for the organic oxidation and reduction reactions. *Applied catalysis B: environmental* 2017, **205**:42-54.
- 14. Mohammadi M, Hadadzadeh H, Kaikhosravi M, Farrokhpour H, Shakeri J: Selective photocatalytic oxidation of benzyl alcohol at ambient conditions using spray-dried g-C₃N₄/TiO₂ granules. *Molecular Catalysis* 2020, **490**:110927.
- 15. Šolís RR, Quintana MA, Blázquez G, Calero M, Muñoz-Batista MJ: Ruthenium deposited onto graphitic carbon modified with boron for the intensified photocatalytic production of benzaldehyde. *Catalysis Today* 2023, **423**:114266.
- 16. Cerdan K, Ouyang W, Colmenares JC, Munoz-Batista MJ, Luque R, Balu AM: Facile mechanochemical modification of g-C₃N₄ for selective photo-oxidation of benzyl alcohol. *Chemical Engineering Science* 2019, **194**:78-84.
- 17. Zhang X, Su H, Cui P, Cao Y, Teng Z, Zhang Q, Wang Y, Feng Y, Feng R, Hou J: **Developing Ni single-atom sites in carbon nitride for efficient photocatalytic H**₂**O**₂ **production**. *Nature Communications* 2023, **14**(1):7115.
- Zhang X, Ma P, Wang C, Gan L, Chen X, Zhang P, Wang Y, Li H, Wang L, Zhou X: Unraveling the dual defect sites in graphite carbon nitride for ultra-high photocatalytic H₂O₂ evolution. *Energy & Environmental Science* 2022, 15(2):830-842.
- 19. Wei Z, Liu M, Zhang Z, Yao W, Tan H, Zhu Y: Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers. *Energy & Environmental Science* 2018, **11**(9):2581-2589.

20. Bhoyar T, Abraham BM, Gupta A, Kim DJ, Manwar NR, Pasupuleti KS, Vidyasagar D, Umare SS: Counterion chemistry of 5-halo (X: Cl, Br, I)-uracil derived carbon nitride: unlocking enhanced photocatalytic performance. *Journal of Materials Chemistry A* 2024, **12**(2):979-992.