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1. Inverse Design

Figure S1. Two methods to design a nano thin film with specific optical properties. (a) Forward 

Design: In this approach, a film structure is initially specified. The optical properties of the 

structure are then determined, and the process is iterated until the desired optical property is 

achieved. (b) Inverse Design: In this method, the desired optical property is specified first. A 

structure that can realize this property is then derived.

In previous approaches, optical design involved an iterative process of specifying the device 

structure and subsequently evaluating its optical properties. Initially, various candidate 

structures were determined, and their optical properties were individually assessed to identify 

a structure that met the desired optical criteria. This methodology is known as "forward design" 

(Fig S1a.) Recently, a new method called "inverse design" that utilizes neural networks has 

been studied. Unlike forward design, inverse design begins by specifying the desired optical 

property. Once the target property is defined, the inverse design method generates a candidate 

structure that can achieve this property. This approach significantly shortens the design process 

and reduces the time required compared to the forward design method (Fig S1b)1.
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2. Introduction of artificial neural networks

Neuron and perceptron

Figure S2. Basic building blocks of a neural network. (a) The basic unit of the brain is the 

neuron. (b) The basic unit of an artificial neural network is the perceptron, modeled after the 

neuron.

The human brain consists of nerve cells called neurons (Figure S2a)2. A neuron's structure is 

divided into dendrites, which receive external stimuli, a cell body that processes these signals, 

and an axon that transmits the processed signals to other neurons via the axon terminal. 

Artificial neural networks are modeled after this structure, with perceptrons serving as the basic 

units, functioning similarly to neurons (Figure S2b)3. Like a neuron receiving external stimuli, 

a perceptron receives values from the previous perceptron. These values are processed based 

on the perceptron's functions, akin to signal processing in the cell body, and the processed value 

is then transmitted to the next perceptron.
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Forward propagation, weight & bias

Figure S3. Presentation of forward propagation and backpropagation. (a) Forward propagation 

refers to the process where input values are computed in each perceptron to produce the output. 

(b) Backpropagation is the process of computing from the output back to the input values to 

obtain the gradient of each input value relative to the output.

As described earlier, input values are calculated to generate new values, which are then 

passed to the next perceptron to obtain the final output. This process is called "forward 

propagation" (Fig S3a). During forward propagation, the input values are multiplied by weights 

and biases are added. The reason for this process is to assign the appropriate weight to each 

input value. The process of multiplying each input by its weight and adding a bias is analogous 

to how human neural networks function. For example, consider a neuron connected to the part 

of the brain that perceives pain in the skin. If this neuron receives both a nociceptive (pain) 

signal and an olfactory (smell) signal, it should be more sensitive to the nociceptive signal. This 

means the nociceptive signal should be weighted more heavily, making the neuron more 

responsive to it. Similarly, in a perceptron, certain input paths may need to be processed with 

greater sensitivity, or there may be situations where two input values need to be considered in 

combination. Therefore, each input value is multiplied by its own weight and a bias is added. 

In some cases, the signal is processed using a formula that accounts for these complex 

situations. The formulas that reflect the weights and biases of the perceptrons in the artificial 

neural network proposed in this paper are given in eq 2 through eq 5 and eq 7 through eq 12 in 

the main script.
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Backpropagation

Backpropagation is a process in which a calculation result is propagated in the opposite 

direction of forward propagation (Fig S3b)4. In this process, the propagated calculation result 

represents the gradient of the loss function with respect to each input of the perceptron. By 

backpropagating from the loss function, which is the output of the proposed network, to the 

layer thickness node, the effect of layer thickness on the loss function can be determined. This 

allows for inverse design through efficient thickness updates using the gradient. The chain rule 

is utilized in the backpropagation process. An example of the result of backpropagation using 

the chain rule can be found in eq 14, eq 19, and eq 20.

3. Single wavelength target & multi-wavelength target inverse design

The artificial neural network proposed in this paper can be utilized for both single-wavelength 

target inverse design and multi-wavelength target inverse design. Single-wavelength target 

inverse design refers to finding a device structure that satisfies the target optical property for a 

specific wavelength. In contrast, multi-wavelength target inverse design involves finding a 

device structure that meets the target optical property across a specific range of wavelengths.

 For single-wavelength target inverse design, it is sufficient to check the optical target 

corresponding to a specific wavelength. Thus, the values corresponding to the target wavelength 

can be used for all the parameters required in eq 13 of the main manuscript. In particular, the 

refractive index and wavenumber, which can vary for different wavelengths, can be calculated 

using the values specific to the target wavelength to obtain a device structure that satisfies the 

expected optical properties.

 Since multi-wavelength target inverse design must satisfy the optical properties across a range 

of wavelengths, calculations are performed using a matrix. One advantage of artificial neural 

networks is their ease of matrix utilization during computations. In inverse design calculations, 

parameters such as layer thickness, refractive index, and wavenumber are input in matrix form 

with values corresponding to the targeted wavelength range. For example, if we assume a multi-

wavelength target inverse design between 400 nm and 750 nm, the layer thickness can be 

expressed in matrix form as shown in eq S1. To perform the process shown in Fig. 3 of the main 

manuscript, the initialized layer thickness is set to have property . 𝑡 400𝑛𝑚 =  𝑡 401𝑛𝑚 =  ⋯ =  𝑡 750𝑛𝑚

Property  indicates that the layer has a uniform thickness, even 𝑡 400𝑛𝑚 =  𝑡 401𝑛𝑚 =  ⋯ =  𝑡 750𝑛𝑚

though it is represented as a matrix. The reason for performing calculations in matrix form is 

that the refractive index and wavenumber have different values for each wavelength. If an 
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independent inverse design is performed for each wavelength, the optimal thickness value for 

each wavelength will differ. After inverse design, the matrix obtained with the optimal layer 

thickness is expressed as equation S2, which may have the characteristics of property 

.𝑡'
400𝑛𝑚 ≠  𝑡'

401𝑛𝑚 ≠  ⋯ =  𝑡'
750𝑛𝑚

                                                          (S1)

𝐼𝑛𝑖𝑡.𝑡𝜆 = [𝑡 400𝑛𝑚
𝑡 401𝑛𝑚

⋮
𝑡 750𝑛𝑚

]

                                                          (S2)

𝑂𝑝𝑡.𝑡𝜆 = [𝑡'
400𝑛𝑚

𝑡'
401𝑛𝑚

⋮
𝑡'

750𝑛𝑚
]

For example, in the inverse design of the red transmittance optical nano thin film shown in 

Fig. 4 of the main manuscript, each layer is initialized as shown in equation S3. At this stage, 

the initial value of each layer can be set randomly. After performing the inverse design process 

proposed in this paper, starting from eq S3, the result is obtained as eq S4. Different thickness 

values are achieved for different wavelengths. By checking the optical spectrum with obtained 

results, eq S4, it is confirmed that the result is designed to realize the target optical property 

(Fig. S4).

       (S3)

𝐼𝑛𝑖𝑡.𝑡1;𝜆 = [90 𝑛𝑚
90 𝑛𝑚

⋮
90 𝑛𝑚

], 𝐼𝑛𝑖𝑡.𝑡2;𝜆 = [7 𝑛𝑚
7 𝑛𝑚

⋮
7 𝑛𝑚

], 𝐼𝑛𝑖𝑡.𝑡3;𝜆 = [130 𝑛𝑚
130 𝑛𝑚

⋮
130 𝑛𝑚

], 𝐼𝑛𝑖𝑡.𝑡4;𝜆 = [5 𝑛𝑚
5 𝑛𝑚

⋮
5 𝑛𝑚

], 𝐼𝑛𝑖𝑡.𝑡1;𝜆 = [246 𝑛𝑚
246 𝑛𝑚

⋮
246 𝑛𝑚

]

    (S4)

𝑂𝑝𝑡.𝑡1;𝜆 = [79 𝑛𝑚
80 𝑛𝑚

⋮
66 𝑛𝑚

], 𝑂𝑝𝑡.𝑡2;𝜆 = [5 𝑛𝑚
5 𝑛𝑚

⋮
3 𝑛𝑚

], 𝑂𝑝𝑡.𝑡3;𝜆 = [146 𝑛𝑚
147 𝑛𝑚

⋮
105 𝑛𝑚

], 𝑂𝑝𝑡.𝑡4;𝜆 = [40 𝑛𝑚
41𝑛𝑚

⋮
29 𝑛𝑚

],𝑂𝑝𝑡.𝑡1;𝜆 = [246 𝑛𝑚
247 𝑛𝑚

⋮
222 𝑛𝑚

]
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Figure S4. Optical property of nano thin film obtained through inverse design. The black 

dashed line represents the targeted optical property spectrum. The red solid line shows the 

optical property of the nano thin film with thickness as eq S4.

  However, it is not feasible to have a device with different thicknesses for each wavelength. 

Therefore, it is necessary to select a representative thickness in the multi-wavelength target 

inverse design process. The representative thickness is determined by selecting the thickness 

for each wavelength, checking the optical property, calculating the loss relative to the target 

property, and choosing the wavelength thickness with the lowest loss value as the representative 

thickness. For example, in eq S4, the value corresponding to the 575 nm wavelength is 

. By configuring the thickness matrix as 𝑡1 = 70 𝑛𝑚, 𝑡2 = 36 𝑛𝑚, 𝑡3 = 116 𝑛𝑚, 𝑡4 = 35 𝑛𝑚, 𝑡5 = 223 𝑛𝑚

in eq S5 and checking the optical property and loss, you can obtain the result shown in the Fig. 

S5a. The results for sets of thicknesses corresponding to the  and  wavelengths 480 𝑛𝑚 600 𝑛𝑚

are shown in Fig. S5b and Fig. S5c, respectively. By performing the same process for all 

wavelengths within the specified range and checking the loss values, the results was obtained 

as shown in Fig. S6. In the inverse design of the red transmittance nano thin film, the lowest 

loss was found in the thickness set corresponding to the wavelength of . Therefore, the 600 𝑛𝑚

thickness corresponding to  was selected as the final design result. The selected thickness 600 𝑛𝑚

is indicated in the main manuscript. Although the multi-wavelength target inverse design 

involves an additional step of selecting a representative thickness, it is much more efficient than 

the typical forward design, as it narrows down the candidates to a specific number of targeted 

wavelengths.

                   (S5)

𝑡1;𝜆 = [70 𝑛𝑚
70 𝑛𝑚

⋮
70 𝑛𝑚

], 𝑡2;𝜆 = [36 𝑛𝑚
36 𝑛𝑚

⋮
36 𝑛𝑚

], 𝑡3;𝜆 = [116 𝑛𝑚
116 𝑛𝑚

⋮
116 𝑛𝑚

], 𝑡4;𝜆 = [35 𝑛𝑚
35 𝑛𝑚

⋮
35 𝑛𝑚

],𝑡1;𝜆 = [223 𝑛𝑚
223 𝑛𝑚

⋮
223 𝑛𝑚

]
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Figure S5. Optical properties of the nano thin film with structures obtained through inverse 

design. The optical properties were evaluated by selecting a representative thickness from the 

inverse design results and applying it to the nano thin film. (a), (b), and (c) show the results of 

applying the thicknesses corresponding to 575 nm, 480 nm, and 600 nm wavelengths as 

representative thickness, respectively. The mean squared error loss values with respect to the 

target spectrum are 0.07, 0.07, and 0.035, respectively.

Figure S6. The mean squared error loss value of the optical spectrum relative to the target 

spectrum when the representative thickness of each layer is selected for the thickness 

corresponding to a specific wavelength in the optimized layer thickness obtained through 

inverse design. 
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4. Multiple local minima

Figure S7. A graph depicting the periodicity of the loss value is presented. (a) Illustrating the 

loss values concerning t1 and t3, ranging from 0nm to 500nm, respectively. (b) Illustrating the 

loss values corresponding to t1 and t5, with values ranging from 0nm to 500nm, respectively.
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5. Results of extracting ten optimal thicknesses for each color target spectrum

Figure S8. The output spectrum of a thin multilayer film exhibits variations in layer thickness 

while consistently transmitting only the red region. Each graph corresponds to the thickness 

values listed in Table S1.

Table S1. The exact thickness of each layer in a red-colored transmissive multilayer thin film 

of different thicknesses achieved through inverse design.

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5

(a) 242 nm 28 nm 117 nm 25 nm 216 nm
(b) 59 nm 29 nm 117 nm 23 nm 60 nm
(c) 240 nm 30 nm 120 nm 24 nm 63 nm
(d) 234 nm 26 nm 111 nm 19 nm 0 nm
(e) 243 nm 20 nm 122 nm 22 nm 68 nm
(f) 71 nm 23 nm 125 nm 24 nm 58 nm
(g) 228 nm 29 nm 109 nm 12 nm 146 nm
(h) 78 nm 22 nm 112 nm 20 nm 153 m
(i) 241 nm 26 nm 115 nm 32 nm 218 nm
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Figure S9. The output spectrum of a thin multilayer film exhibits variations in layer thickness 

while consistently transmitting only the green region. Each graph corresponds to the thickness 

values listed in Table S2.

Table S2. The exact thickness of each layer in a green-colored transmissive multilayer thin film 

of different thicknesses achieved through inverse design.

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5

(a) 168 nm 18 nm 198 nm 17 nm 170 nm
(b) 153 nm 19 nm 200 nm 19 nm 180 nm
(c) 161 nm 19 nm 211 nm 17 nm 150 nm
(d) 170 nm 20 nm 204 nm 18 nm 16 nm
(e) 170 nm 24 nm 72 nm 27 nm 151 nm
(f) 166 nm 23 nm 183 nm 8 nm 280 nm
(g) 291 nm 20 nm 206 nm 17 nm 154 nm
(h) 292 nm 20 nm 192 nm 11 nm 167 nm
(i) 187 nm 26 nm 77 nm 27 nm 33 nm
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Figure S10. The output spectrum of a thin multilayer film exhibits variations in layer thickness 

while consistently transmitting only the blue region. Each graph corresponds to the thickness 

values listed in Table S3.

Table S3. The exact thickness of each layer in a blue-colored transmissive multilayer thin film 

of different thicknesses achieved through inverse design. 

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5

(a) 121nm 23 nm 45 nm 15 nm 95 nm
(b) 114 nm 21 nm 38 nm 11 nm 109 nm
(c) 111 nm 13 nm 36 nm 21 nm 108 nm
(d) 25 nm 30 nm 49 nm 26 nm 33 nm
(e) 122 nm 21 nm 44 nm 12 nm 122 nm
(f) 135 nm 29 nm 51 nm 27 nm 29 nm
(g) 123 nm 25 nm 40 nm 13 nm 31 nm
(h) 110 nm 19 nm 25 nm 13 nm 119 nm
(i) 115 nm 19 nm 20 nm 9 nm 3 nm
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