Supporting information

The Influence of Drying Routes on the Properties of Anisotropic All-Cellulose Composite Foams from Post-Consumer Cotton Textiles

Carina Schiele¹, Maria-Ximena Ruiz-Caldas¹, Tingting Wu^{2,3}, Elisabetta Nocerino^{1,4}, Agnes Åhl¹, Aji P. Mathew¹, Gustav Nyström^{2*}, Lennart Bergström^{1,5*}, Varvara Apostolopoulou-Kalkavoura^{1,2*}

¹Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden

²Cellulose & Wood Materials Laboratory, Empa, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland.

³Institute of Sustainability for Chemicals, Energy and Environment (ISCE²), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island 627833, Singapore

⁴Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute (PSI), Villigen, CH-5232 Switzerland

⁵Wallenberg Initiative Materials Science for Sustainability, Department of Materials and Environmental Chemistry, Stockholm University, 114 18 Stockholm, Sweden

*Corresponding authors: gustav.nystroem@empa.ch, lennart.bergstrom@mmk.su.se, varvara.apostolopoulou@mmk.su.se

Figure S 1: Exemplary conductometric titration curves of (a) cotton textile-derived CNCs and (b) wood-derived CNFs. The flat region corresponds to the titration of carboxylic groups.

Figure S 2: Particle diameter and length distribution of cotton textile-CNCs and wood-CNFs with the fitting of the lognormal distribution.

Label	CNC:CNF ratio	Density at 50% RH	Porosity	Solid content	Drying technique
		[kg m ⁻³]	[%]	[wt%]	
CNC:CNF-1:1_FD	1:1	13 ± 0.4	99	1	FD
CNC:CNF-5:1_FD	5:1	34 ± 1.2	98	3	FD
CNC:CNF-9:1_FD	9:1	52 ± 0.8	96	5	FD
CNC:CNF-1:1_SCD	1:1	24 ±1.3	98	1	SCD
CNC:CNF-5:1_SCD	5:1	44 ± 1.6	98	3	SCD
CNC:CNF-9:1_SCD	9:1	66 ± 1.6	96	5	SCD

Table S 1: Composition and properties of the foams

Figure S 3: Scanning electron microscopy images of the eight different configurations along the radial (top) and axial (bottom) direction.

Label Macropore size		Macropore size	Surface area	Share of	Share of	CO ₂ adsorption
	[µm]	[µm]	[m ² g ⁻¹]	macropores	nanosized pores	[mmol g ⁻¹]
	via SEM	via Tomography	via BET	(≥ 300 nm) [%]	(≤ 300 nm) [%]	
	n=120	n=120				
CNC:CNF-1:1_FD	28 ± 8	19 ± 4	19	99.92	0.08	-
CNC:CNF-5:1_FD	26 ± 8	16 ± 4	8	99.92	0.08	-
CNC:CNF-9:1_FD	27 ± 8	13 ± 3	6	99.90	0.10	-
CNC:CNF-1:1_SCD	9 ± 2	-	234	98.76	1.24	-
CNC:CNF-5:1_SCD	9 ± 4	9 ± 2	263	97.60	2.40	0.385
CNC:CNF-9:1_SCD	10 ± 3	15 ± 3	262	96.87	3.13	0.383

Table S 2: Properties of the foam pores, surface area and CO₂ adsorption

Table S 3: Scale factor C derived from the Porod model at different relative humidity (RH)

Label		Scale Factor C	Scale Factor C		
		(x 10 ⁻⁶)	(x 10 ⁻⁶)		
		At 50% RH	At 80% RH		
-	CNC:CNF-1:1_FD	2.53 ± 0.03	2.28 ± 0.03		
	CNC:CNF-5:1_FD	1.76 ± 0.03	1.60 ± 0.03		
	CNC:CNF-1:1_SCD	107 ± 0.18	109 ± 0.35		
	CNC:CNF-5:1_SCD	347 ± 0.40	428 ± 0.40		

Figure S 4: Pore volume of pores between 1.7 and 300 nm as estimated from N₂ sorption using the Barrett–Joyner–Halenda (BJH) model.

Figure S 5: CO_2 adsorption capacity at STP and 0°C of CNC:CNF-5:1_SCD and CNC:CNF-9:1_SCD as a function of CO_2 adsorption cycles.

Figure S 6: XRD profiles of (a) cotton textile CNCs and (b) wood CNFs. The dotted curve corresponds to the experimental data. The black line is the fitted model. the red curves are the crystalline peaks. and the blue curve is the amorphous peak. The crystallinity indexes derived from these figures are stated in Table S2.

Table S 4	4: Crysta	llinity index	(CI) of	cotton texti	le CNCs and	l wood CNFs
-----------	-----------	---------------	---------	--------------	-------------	-------------

Label	Cl deconvolution [%]	CI Segal [%]
Cotton textile CNC	83	92
Wood CNF	77	78

Label	Macropore alignment	Particle alignment	Particle alignment	Particle alignment
	SEM + OrientationJ	50%RH	80%RH	WAXS
	n=3	SAXS	SAXS	n=3
CNC:CNF-1:1_FD	0.93 ± 0.01	0.92	0.92	0.70 ± 0.01
CNC:CNF-5:1_FD	0.91 ± 0.01	0.89	0.91	0.62 ± 0.02
CNC:CNF-9:1_FD	0.92 ± 0.01	-	-	0.71 ± 0.02
CNC:CNF-1:1_SCD	0.85 ± 0.02	-	-	-
CNC:CNF-5:1_SCD	0.88 ± 0.02	-	-	-
CNC:CNF-9:1_SCD	0.78 ± 0.04	-	-	-

Table S 5: Orientation degree for the foam walls and the particles

Figure S 7: Thermal conductivity of a super-insulating reference material (PU aerogel) measured with the Hot disk in isotropic and anisotropic mode compared to a reference measurement on the Guarded Hot Plate apparatus.

Label	Young's Modulus	Specific Young's	Toughness	Specific Toughness
	[kPa]	Modulus	[kJ m ⁻³]	[kJ kg ⁻¹]
		[kNm kg ⁻¹]		
	n=5	n=5	n=5	n=5
CNC:CNF-1:1_FD	440 ± 140	35 ± 10	210 ± 70	17 ± 5
CNC:CNF-5:1_FD	2600 ± 550	76 ± 17	1600 ± 300	48 ± 8
CNC:CNF-9:1_FD	4200 ± 400	81 ± 8	2100 ± 780	41 ± 15
CNC:CNF-1:1_SCD	330 ± 57	14 ± 2	340 ± 160	14 ± 6
CNC:CNF-5:1_SCD	560 ± 120	13 ± 2	280 ± 74	6 ± 2
CNC:CNF-9:1_SCD	950 ± 180	14 ± 3	330 ± 120	5 ±2

Table S 6: Mechanical properties of the foams

Figure S 8: Orientation degree f of the columnar macropores as a function of the anisotropy ratio of the thermal conductivity.