Supporting Information

Nanosilica polyamidoamine dendrimers for Enhanced Direct Air CO₂ Capture

Vaishnavi Kulkarni, Jayashree Parthiban, and Sanjay Kumar ${\rm Singh}^*$

Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India

email: sksingh@iiti.ac.in

.....

Table of Contents

Content	Page No.
Experimental Section	S3-S4
Characterization	S4
Evaluation of CO ₂ adsorption performance	S4-S6
Scheme S1. Preparation of NS-PAMAM dendrimers.	S6
Figure S1. P-XRD patterns of NS-PAMAM dendrimers.	S7
Figure S2. FTIR spectra of (a) NS, NS-G0, NS-G1.0, NS-G2.0, NS-G3.0, and NS-	S 7
G4.0 and (b) NS, NS-G0.5, NS-G1.5, NS-G2.5, and NS-G3.5.	
Figure S3. TGA curves of NS-PAMAM dendrimers.	S 8
Figure S4. (a) N_2 adsorption-desorption isotherm at -196 °C and (b) corresponding	S8
pore size distribution obtained using NLDFT method of NS-PAMAM dendrimers.	
Figure S5. (a-f) FESEM images of (a) NS, (b) NS-G0, (c) NS-G1.0, (d) NS-G2.0,	S9-S10
(e) NS-G3.0, (f) NS-G4.0 and (g-l) and their corresponding EDS spectra.	
Figure S6. (a) TEM and (b) HAADF-STEM images of NS-G0.	S11
Figure S7. (a) TEM and (b) HAADF-STEM images of NS-G3.0.	S11
Figure S8. CO ₂ uptake (400 ppm CO ₂ in He), 30 °C of (a) NS, NS-G0.5, NS-G1.5,	S12
NS-G2.5, and NS-G3.5 and (b) NS-G0, NS-G1.0, NS-G2.0, NS-G3.0, and NS-G4.0.	
Figure S9. Effect of increasing NS-PAMAM dendrimers on the CO ₂ uptake	S12
performance.	
Figure S10. CO ₂ uptake (400 ppm CO ₂ in He), (\geq 400 ppm CO ₂ in indoor air, 26±3	S12
% RH), and (\geq 400 ppm CO ₂ in indoor air, 50±3 % RH) at 30 °C of NS-G3.0.	

Figure S11. P-XRD studies of NS-G3.0 after 10 successive adsorption-desorption	S13
cycles under indoor air (≥400 ppm CO ₂ , 50±3% RH at 30 °C).	
Figure S12 . ¹³ C NMR obtained for CO ₂ desorption (desorption period: N ₂ , 0.5 h,	S13
80 °C) and further passed into KOH (1 mmol), water (5 mL).	
Figure S13. GC-TCD analysis of (a) CO ₂ desorbed by NS-G3.0, (b) analysis after	S14
CO ₂ capture (c) standard pure CO ₂ gas (99.999%) (CO ₂ adsorption-desorption	
carried out under \geq 400 ppm CO ₂ , 50 ±3% RH, adsorption period: 0.5 h, 30 °C, and	
desorption period: N ₂ , 0.5 h, 80 °C).	
Figure S14. (a) ¹ H NMR with sodium acetate (0.25 mmol) as the internal standard	S15
and (b) ^{13}C NMR spectrum with D2O as solvent after the hydrogenation of captured	
$CO_2 (CO_3^{2-})$ to formate.	
Table S1 Amine loading on studied adsorbents (from TGA and EDS Analysis).	S16
Table S2 Textural properties and CO ₂ adsorption results of NS-PAMAM	S17
dendrimers.	
Table S3 Comparative chart of CO_2 adsorption performance of amine-based	S17-S19
adsorbents under DAC condition.	
Table S4 Comparative chart of amine-based sorbent regeneration and cyclic CO2	S19-S20
adsorption-desorption stability for DAC applications.	
References	S21-S23

1. Experimental section

1.1 Materials. Tetraethyl orthosilicate (TEOS), (3-Aminopropyl) triethoxysilane (APS), methyl acrylate (MA) and ethylene diamine (EDA) and were procured from Sigma-Aldrich. Anhydrous ethanol was purchased from Changshu Hongsheng Fine Chemical Company (99.9%), aqueous ammonia from Rankem, and HPLC methanol from Merck. All chemicals were used as received without any further purification. The high purity N₂ (99.99%) and 400 ppm CO₂ in He (99.99%; < 0.0002% H₂O) were supplied by Inox air products Pvt. Ltd. and Sigma gases and services, India, respectively.

1.2. Synthesis of nanosilica. To prepare Nanosilica (NS), initially, 16 mL of tetraethyl orthosilicate (TEOS) was added to 200 mL of ethanol in the presence of 16 mL of ammonia solution and placed in a water bath under ultrasonic vibration for 2 hours.¹ The resulting white solid contents were then centrifuged and washed with water and ethanol until the pH of the supernatant is neutral. The white solid part was then dried at 80 °C under vacuum for 12 hours.

1.3. Synthesis of one-pot aminosilane modified nanosilica. The standard process for preparing one-pot aminosilane modified nanosilica (NS-G0) involves the addition of 16 mL of tetraethyl orthosilicate (TEOS) to a mixture containing 16 mL of aqueous ammonia, and 200 mL of ethanol.² The resulting mixture is placed in water bath under ultrasonication for 2 hours to obtain a solid white precipitate. The solid white precipitate was washed with distilled water and ethanol several times until neutral pH was attained. The precipitate is then dried in a vacuum oven at 70 °C for 12 hours.

1.4 Synthesis of polyamidoamine nanosilica dendrimers. The process of grafting and propagating hyperbranched polyamidoamine nanosilica surface was attained through a twostep procedure: (1) initiating a Michael addition reaction between methyl acrylate (MA) and the amino groups present on the surface, followed by (2) the amidation of resultant terminal ester groups using ethylenediamine (EDA).³ The Michael addition of methyl acrylate (MA) to the amino groups on the surface was performed by the addition of 0.42 g of NS-G0 to 7 mL of methanol containing 0.84 g of MA, in a round-bottom flask. Subsequently, the mixture was stirred at 50°C for 24 hours. The resulting white powder (NS-G0.5) was isolated by multiple washes with methanol (or washed with methanol thrice), and subsequently dried at room temperature. The amidation of terminal ester groups was achieved by the addition of 0.84 g of EDA to 7 mL methanol containing G0.5 white powder and heated at 50 °C for 24 hours. Subsequently, the resulting white powder (NS-G1.0) was washed with methanol several times and dried under vacuum at room temperature. Further the hyperbranched polymer was synthesized by repeating the steps involving Micheal addition with MA and amidation with EDA till the hyperbranched polyamidoamine NS-G4.0 dendrimers were obtained.

2. Characterization. Prior to the analysis of textural properties, pristine NS and PAMAM modified NS adsorbents are outgassed at 110 °C for 3 hours under ultrahigh vacuum, respectively. The low temperature (110 °C) outgassing condition is chosen to avoid the amine loss.^{4,5} Powder X-ray diffraction (P-XRD) data is recorded on a Rigaku SmartLab advanced diffractometer with monochromatic Cu K α radiation ($\lambda = 0.154$ nm) at a step size of 0.02° and counting time of 3s/step over a 2θ range from 5 to 45°. The morphology and microstructure of adsorbents are observed under field emission scanning electron microscopy (FESEM) (Carl ZEISS Supra-55, accelerating voltage of 5 kV) and transmission electron microscopy (TEM) (FEI Tecnai G2, F30, operating voltage 300 kV). EDS and elemental mapping analysis are performed on EDAX Octane ELITE T70 (operating voltage 300 kV). The N₂ physisorption measurements are carried out at -196 °C using a Quantachrome Autosorb iQ₂ TPX automated gas sorption system to investigate the physicochemical properties (surface area and pore volume) of the adsorbents. The specific surface area of adsorbents is calculated using the Brunauer-Emmett-Teller (BET) equation in the relative pressure (P/P_0) range of 0.05-0.30 from the adsorption branch. Pore size distribution is calculated using the NLDFT (Non-Local Density Functional Theory) model.⁶ The total pore volume is calculated based on the total amount of adsorbed N_2 at P/P₀ of 0.99. The amine loading of the adsorbent is determined by using a Mettler-Toledo TGA/DSC-1 thermal analyzer. The data is recorded by heating the sample under nitrogen flow from 25 to 800 °C with a ramp rate of 5 °C/min. Amine loading is defined as the mass percentage of the amine loss to the total sorbent mass during the temperature range of 120-800 °C. The molecular composition of the adsorbent is identified by Fourier transform infrared (FT-IR, PerkinElmer) spectrometry in attenuated total reflection (ATR) mode in the wavenumber range $4000-400 \text{ cm}^{-1}$.

3. Evaluation of CO₂ adsorption performance

3.1 CO₂ uptake under direct air capture condition (400 ppm CO₂ in He). To assess the efficacy of NS-PAMAM dendrimers, for carbon dioxide (CO₂) adsorption during a simulated Temperature Swing Adsorption (TSA) cycle,⁷ we performed thermogravimetric measurements using a Mettler Toledo TGA/DSC-1 instrument. The TSA cycle involved four distinct steps:

desorption, cool down, adsorption, and heat up. In the experimental procedure, a 0.012 g powder sample was placed in an alumina crucible and subjected to a 3-hour outgassing period at 110 °C under a nitrogen flow of 20 mL/min to eliminate moisture (step I). Subsequently, the temperature of the adsorbent was reduced to 30 °C over 27 minutes (step II) and stabilized for 10 minutes under a nitrogen flow (step III). Following this, the adsorbent was exposed to a mixture of 400 ppm CO₂ in helium (20 mL/min) for 12 hours at 30 °C (step IV). The adsorption duration was carefully selected to ensure the attainment of pseudo-equilibrium adsorption capacity, with the weight change remaining below 8×10^{-3} % per min.⁸

3.2 Direct CO₂ adsorption under indoor air condition. In this investigation, the synthesized PAMAM dendrimers were assessed for their ability to capture CO₂ from indoor air using a flow-through setup. Each sample, weighing 0.1 g, was placed within an adsorbent bed fitted with a heating tape. During the 0.5-hour adsorption phase, an airflow of approximately 2 L/min was directed through the adsorbent bed. For desorption, the adsorbent bed was heated to 80 °C while for 0.5 h. The concentration of CO₂ in the chamber was continuously monitored using a CO₂ analyzer (ATS-206A), and the adsorption capacity was determined by integrating the quantity of CO₂ captured over the 0.5 h period.

3.3 Reutilizing CO₂ Released from NS-G3.0 during desorption by conversion to formate.

Further, to reutilize the CO₂ produced during the desorption of CO₂ captured over NS-G3.0, we adopted a two-step CO₂ hydrogenation process. NS-G3.0 (0.1 g) underwent an adsorption cycle at 30 °C and 400 ppm CO₂ and later for the desorption step heated at 80 °C for 0.5 h. The released gas CO₂ (confirmed by GC-TCD analysis) is passed through KOH (1 mmol) in water (5 mL) for 2 h to capture CO₂ (as CO₃^{2–}, confirmed by ¹³C NMR spectra). The effluent gas was analyzed to have only N₂ gas (as confirmed by GC-TCD), confirming the complete capture of CO₂ released during the desorption process. Later, this solution containing CO₃^{2–} is transferred to a 50 mL high-pressure reactor and pressurized with H₂ gas (20 bar) and **[Ru]-1** (0.025 mmol) heated at 80 °C for 6 h. After cooling to room temperature, the gas is released, and the resulting solution is finally analyzed by ¹H NMR (D₂O) from the reactor.

3.4 Reutilizing CO₂ Released from NS-G3.0 during desorption by conversion to CaCO₃ pellets. The experimental setup involved utilizing desorbed CO₂ obtained from NS-G3.0. The desorbed CO₂ was passed through a 5 mL solution of Ca(OH)₂.¹⁰ The desorption process was carried out under N₂, at 80°C for 0.5 h. Subsequently, the desorbed CO₂ was bubbled through the Ca(OH)₂ solution until the lime water exhibited a milky appearance, indicating the

formation of a white precipitate. The formed precipitate, identified as $CaCO_3$, was carefully separated, washed thoroughly, and subjected to centrifugation. Afterward, the precipitate was dried and then transformed into small pellets, making it ready for further applications in line with the objective of repurposing desorbed CO_2 from NS-G3.0 into a useful product.

Scheme S1. Preparation of NS-PAMAM dendrimers.

Figure S1. P-XRD patterns of NS-PAMAM dendrimers.

Figure S2. FTIR spectra of (a) NS, NS-G0, NS-G1.0, NS-G2.0, NS-G3.0, and NS-G4.0 and (b) NS, NS-G0.5, NS-G1.5, NS-G2.5, and NS-G3.5.

Figure S3. TGA curves of NS-PAMAM dendrimers.

Figure S4. (a) N_2 adsorption-desorption isotherm at -196 °C and (b) corresponding pore size distribution obtained using NLDFT method of NS-PAMAM dendrimers.

Figure S5. (a-f) FESEM images of (a) NS, (b) NS-G0, (c) NS-G1.0, (d) NS-G2.0, (e) NS-G3.0, (f) NS-G4.0 and (g-l) and their corresponding EDS spectra.

Figure S6. (a) TEM and (b) HAADF-STEM images of NS-G0.

Figure S7. (a) TEM and (b) HAADF-STEM images of NS-G3.0.

Figure S8. CO₂ uptake (400 ppm CO₂ in helium), 30 °C of (a) NS, NS-G0.5, NS-1.5, NS-G2.5, and NS-G3.5 and (b) NS-G0, NS-G1.0, NS-G2.0, NS-3.0, and NS-G4.0.

Figure S9. Effect of increasing NS-PAMAM dendrimers on the CO₂ uptake performance.

Figure S10. CO_2 uptake (400 ppm CO_2 in He), (\geq 400 ppm CO_2 in indoor air, 26 \pm 3 % RH), and (\geq 400 ppm CO_2 in indoor air, 50 \pm 3 % RH) at 30 °C of NS-G3.0.

Figure S11. P-XRD studies of NS-G3.0 after 10 successive adsorption-desorption cycles under indoor air (\geq 400 ppm CO₂, 50±3% RH at 30 °C).

Figure S12. ¹³C NMR obtained for CO₂ desorption (desorption period: N₂, 0.5 h, 80 °C) and further passed into KOH (1 mmol), water (5 mL).

Figure S13. GC-TCD analysis of (a) CO₂ desorbed by NS-G3.0, (b) analysis after CO₂ capture (c) standard pure CO₂ gas (99.999%) (CO₂ adsorption-desorption carried out under \geq 400 ppm CO₂, 50 ±3% RH, adsorption period: 0.5 h, 30 °C, and desorption period: N₂, 0.5 h, 80 °C).

Figure S14. (a) ¹H NMR with sodium acetate (0.25 mmol) as the internal standard and (b) ¹³C NMR spectrum with D_2O as solvent after the hydrogenation of captured CO_2 (CO_3^{2-}) to formate.

General procedure for calculation of formate yield after CO₂/ (bi)carbonate hydrogenation reactions.

For calculating the yield of formate:

$$\mathbf{Y}_{\mathbf{f}} = \frac{\mathbf{I}_{\mathbf{f}} \mathbf{x} \mathbf{I}_{\mathbf{is}} \mathbf{x} \mathbf{V}_{\mathbf{T}}}{\mathbf{V}_{\mathbf{R}}}$$

Where,

 $Y_f = Yield of formate in mmol$

 $I_f = Integration value of formate$

 $I_{is} =$ Integration value of internal standard

 V_T = Total volume of reaction aliquot (mL)

 V_R = Volume of reaction aliquot taken for NMR analysis (mL)

As per the data from Figure S10:

 $Y_f = \frac{0.43 \text{ x } 0.25 \text{ x } 5}{0.54} = 0.99$

Material	N content				
	From TGA (mmolN/g)	From EDS analysis (wt%)			
NS	2.7	0.9			
NS-G0	4.2	1.2			
NS-G0.5	6.2	2.3			
NS-G1.0	6.6	2.6			
NS-G1.5	6.9	2.7			
NS-G2.0	7.1	2.8			
NS-G2.5	7.4	3.2			
NS-G3.0	8.6	3.4			
NS-G3.5	9.2	3.8			
NS-G4.0	9.6	4.3			

Table S1 Amine loading¹ on studied adsorbents (from TGA and EDS Analysis).

¹Amine loading is defined as the mass percentage of the amine loss to the total sorbent mass measured from TGA.

Material	S _{BET} ^a	V _{total} ^b	Pore	qco2 ^d	qco2 ^e			
	(m^2/g)	(cm ³ /g)	diameter	(mmol/g)	(mmol/g)			
			(nm) ^c	30 °C,	30 °C,			
				400 ppm	indoor			
					air			
NS	912	1.43	3.79	0.09	0.15			
NS-G0	178	0.84	3.77	0.16	0.24			
NS-G0.5	18	0.09	3.78	0.24	0.43			
NS-G1.0	32	0.09	3.77	0.19	0.45			
NS-G1.5	23	0.09	3.77	0.23	0.59			
NS-G2.0	25	0.09	3.54	0.30	0.61			
NS-G2.5	21	0.09	3.43	0.45	1.04			
NS-G3.0	24	0.07	3.43	0.50	1.54			
NS-G3.5	20	0.05	3.38	0.28	1.25			
NS-G4.0	22	0.02	3.09	0.27	0.84			
^a Specific surface area calculated using BET method ($P/P_0 = 0.05-0.30$). ^b Total pore volume calculated from N ₂ adsorption at $P/P_0 = 0.99$.								
^c Pore diameter calculated using NLDFT method.								
$^{d}CO_{2}$ adsorption capa	d CO ₂ adsorption capacity measured using TGA for 400 ppm CO ₂ (simulated air).							

Table S2 Textural properties and CO₂ adsorption results of PAMAM dendrimer modified NS.

Table S3 Comparative chart of CO_2 adsorption performance of amine-based adsorbents underDAC condition.

	Amine T type (°C)	CO ₂	Amine loading	CO2 uptake (mmol/g)		Amine efficiency		
Support		(°C)	conc. (ppm)	(mmol N/g)	Dry CO2	Humid CO ₂	(mmol CO ₂ /mmo l N)	Ref.
Nanosilica	PAMAM	30	400	8.6	0.50	-	0.06	This work
Nanosilica	PAMAM	30	≥400	8.6	1.02	-	0.12	This work
Nanosilica	PAMAM	30	≥400	8.6	-	1.54 ^a	0.18	This work
SBA-15	PAMAM	20	90%	-	0.95	-	-	11
SBA-15	PAMAM	30	90%	-	0.45	-	-	12
W-AG-150A	TMPTA	25	400	5.12	0.77	1.09 ^b	0.15	13
HBS	TMPTA	25	400	7.73	1.04	-	0.13	14
OHNS	AAMS	25	400	-	0.55		-	15
Mesocellular silica foam	APTMS	25	400	2.70	0.54	-	0.20	16
Mesocellular silica foam	MAPS	25	400	2.41	0.17	-	0.07	16

O-Al ₂ O ₃	APS	30	400	5.43	0.76	-	0.14	17
D-Al ₂ O ₃	APS	30	400	4.13	0.62	-	0.15	17
Silica gel	AEATPM S	25	400- 440	2.48	0.40	0.44 ^c	0.16 0.18	18
Nano fibrillated Cellulose	AEAPDM S	25	506	4.9	-	1.39 ^c	0.28	19
Nano fibrillated Cellulose	APDES	23	400	4.9	1.11	2.13 ^d	0.26 0.51	20
PPN- 6	DETA	22	400	8.5	1.04		0.12	21
RFAS	APS	25	400	8.07		1.69 ^e	0.21	22
SBA-15	APTMS	25	400	-	0.14	0.14 ^f	-	23
SBA-15 pellet	APTMS	25	400	-	0.09	0.13 ^f	-	23
SBA- 15	Alkyl halide+ Ammonia	30	400	1.62	0.07	-	0.043	24
Pore- expanded MCM-41	ТМРТА	30	400	7.9	0.64	0.55 ^h	-	25
Pore- expanded MCM-41	ТМРТА	25	400	7.9	0.98	-	0.12	26
Mg ₂ (dobpdc)	Ethylenedi amine	25	390	-	2.83	-	-	27
Mg ₂ (dobdc)	Hydrazine	25	400	6.01	3.89	-	-	28
Mg-MOF-74	Ethylenedi amine	25	400		1.51	-	-	29
Mg ₂ (dobpdc)	mmen	25	390	-	2.0	-	-	30
Cr-MIL-101- SO ₃ H	TAEA	20	400		1.12	-	-	31
SBA- 15	Z-l- Lysine+ APTMS	25	400	5.18	0.60	-	0.12	32
Hybrid silica	APS	30	400	4.5	-	1.68 ⁱ	0.37	33
SBA- 15	Aziridine	25	400	9.9	-	1.72 ^j	0.17	34
AHTSA	APS	30	400	8.47	1.64	-	0.19	35
Macroporous Silica	L-alanine	50	400	10.98	2.65	-	0.24	36

^a 50±3% humidity; ^b 53% humidity; ^c 40% humidity; ^d 91% relative humidity; ^e 4% relative humidity; ^f 80% relative humidity; ^g 49% relative humidity; ^h 73% relative humidity; ⁱ 60% relative humidity; ^jfully humified condition; APS: (3-aminopropyl) triethoxysilane; TMPTA: N¹-(3-trimethoxysilylpropyl)diethylenetriamine; AAMS: N-(2-aminoethyl)-3-aminopropylmethyldiethoxysilane; APTMS: (3-aminopropyl) trimethoxysilane; MAPS: N-methylaminopropyl trimethoxysilane; AEATPMS: N-(3-(trimethoxysilyl) propyl) ethane-1,2-diamine, AEAPDMS: N-2-aminoethyl-3-aminopropylmethyldimethoxysilane; APDES: 3-Aminopropyl-methyl-diethoxysilane; DETA: diethylenetriamine; mmen, N,N'-

dimethylethylenediamine;	TAEA:	tris(2-amir	noethyl)amine.	TRI,	2-[2-(3-
trimethoxysilylpropylamino)et	thylamino]e	thylamine,	AHTSA,	amine	hybrid
titania/silsesquioxane composi	te aerogel.				

Table S4 Comparative chart of amine-based sorbent regeneration and cyclic CO_2 adsorptiondesorption stability for DAC applications.

Support	Amine type	Sorbent regeneration condition		Ref.
Nano Silica	PAMAM	80 °C for 0.5 h under vacuum	No capacity loss over 10 cyclic runs	This work
Hierarchical Silica	APS	110 °C for 0.5 h under N ₂ flow at 20 mL/min	13% capacity loss in 5 cyclic runs	37
Hierarchical Silica	ТМРТА	110 °C for 0.5 h under N ₂ flow at 20 mL/min	15% capacity loss in 5 cyclic runs	37
Pore- expanded MCM-41	ТМРТА	100 °C for 15 min by synthetic air at 10 mL/min	~24% capacity loss in 4 cyclic runs ¹	25
Silica	PEI	110 °C for 3 h under Ar flow at 100 mL/min	30.1% capacity loss in 4 cyclic runs	38
Silica	A-PEI	110 °C for 3 h under Ar flow at 100 mL/min	9.3% capacity loss in 4 cyclic runs	38
Silica	T-PEI	110 °C for 3 h under Ar flow at 100 mL/min	1.36% capacity loss in 4 cyclic runs	38
Fumed Silica	PEI	85 °C for 3 h under vacuum	3.5% capacity loss in 4 cyclic runs	39
Hierarchical Silica	PEI	110 °C for 6 h under He flow at 100 mL/min	16% capacity loss in 5 cyclic runs humid condition, whereas no appreciable change in CO ₂ adsorption capacity in dry condition	40
SBA-15	PEI	110 °C for 9 h under Ar flow at 100 mL/min	Stable over short multicycle operations (3 cyclic runs)	41

CA-SiO ₂	PEI	110 °C for 2 h under He flow	9.6% pseudo-equilibrium capacity and 16% breakthrough capacity loss in 20 cyclic runs	8		
Mg ₂ (dobpdc)	en	150 °C for 2 h under simulated air (0.39 mbar CO ₂) purge at 60 mL/min	6% capacity loss in 5 cyclic runs	27		
MIL-101-Cr	PEI	110 °C for 3 h under He flow at 90 mL/min	CO ₂ uptake dropped 2.7 % and 1.9% after the first and second cycles, respectively (total 3 cyclic runs)	42		
¹ Data retrieved from Data from graph software (Version 1.0) APS/APTES: 3- (aminopropyl)triethoxysilane ;TMPTA: 2-[2-(3-trimethoxysilylpropylamino) ethylaminolethylamine: TEPA: tetraethylenepentamine: PEI: polyethyleneimine: A-PEI: 3-						

ethylamino]ethylamine; TEPA: tetraethylenepentamine; PEI: polyethyleneimine; A-PEI: 3-(aminopropyl)triethoxysilane-PEI, T-PEI: tetrapropyl orthotitanate-PEI, en: ethylenediamine)

References:

- 1 C. A. R. Costa, C. A. P. Leite and F. Galembeck, *J. Phys. Chem. B*, 2003, **107**, 4747–4755.
- 2 X. Du and J. He, *Nanoscale*, 2012, **4**, 852–859.
- 3 R. J. Kalbasi and F. Zamani, *RSC Adv.*, 2014, **4**, 7444–7453.
- 4 A. A. Al-Absi, M. Mohamedali, A. Domin, A. M. Benneker and N. Mahinpey, *Chem. Eng. J.*, 2022, **447**, 137465.
- 5 G. Calleja, R. Sanz, A. Arencibia and E. S. Sanz-Pérez, in *Topics in Catalysis*, Springer, 2011, **54**, 135–145.
- B. Ferreira dos Santos, J. A. Cecilia, M. Bastos-Neto, E. Rodríguez-Castellón, D. C.
 Silva de Azevedo and E. Vilarrasa-García, *Chem. Eng. Res. Des.*, 2022, 177, 583–593.
- A. Gutierrez-Ortega, R. Nomen, J. Sempere, J. B. Parra, M. A. Montes-Morán and R.
 Gonzalez-Olmos, *Chem. Eng. J.*, 2022, 435, 134703.
- A. R. Sujan, S. H. Pang, G. Zhu, C. W. Jones and R. P. Lively, ACS Sustain. Chem.
 Eng., 2019, 7, 5264–5273.
- 9 D. R. Kumar, C. Rosu, A. R. Sujan, M. A. Sakwa-Novak, E. W. Ping and C. W. Jones, ACS Sustain. Chem. Eng., 2020, 8, 10971–10982.
- 10 S. J. Han, M. Yoo, D. W. Kim and J. H. Wee, *Energy Fuels*, 2011, **25**, 3825–3834.
- 11 Z. Liang, B. Fadhel, C. J. Schneider and A. L. Chaffee, *Microporous Mesoporous Mater.*, 2008, **111**, 536–543.
- Y. Jing, L. Wei, Y. Wang and Y. Yu, *Microporous Mesoporous Mater.*, 2014, 183, 124–133.
- 13 J. T. Anyanwu, Y. Wang and R. T. Yang, Ind. Eng. Chem. Res., 2020, 59, 7072–7079.
- 14 J. T. Anyanwu, Y. Wang and R. T. Yang, *Chem. Eng. J.*, 2022, **427**, 131561.
- 15 K. Suresh, K. Reddy, A. M. Varghese, A. E. Ogungbenro and G. N. Karanikolos, 2023,

2, 720–733.

- S. A. Didas, A. R. Kulkarni, D. S. Sholl and C. W. Jones, *ChemSusChem*, 2012, 5, 2058–2064.
- M. E. Potter, K. M. Cho, J. J. Lee and C. W. Jones, *ChemSusChem*, 2017, 10, 2192–2201.
- J. A. Wurzbacher, C. Gebald and A. Steinfeld, *Energy Environ. Sci.*, 2011, 4, 3584–3592.
- C. Gebald, J. A. Wurzbacher, P. Tingaut, T. Zimmermann and A. Steinfeld, *Environ. Sci. Technol.*, 2011, 45, 9101–9108.
- 20 C. Gebald, J. A. Wurzbacher, A. Borgschulte, T. Zimmermann and A. Steinfeld, *Environ. Sci. Technol.*, 2014, 48, 2497–2504.
- W. Lu, J. P. Sculley, D. Yuan, R. Krishna and H. C. Zhou, *J. Phys. Chem. C*, 2013, 117, 4057–4061.
- L. He, M. Fan, B. Dutcher, S. Cui, X. dong Shen, Y. Kong, A. G. Russell and P. McCurdy, *Chem. Eng. J.*, 2012, **189–190**, 13–23.
- 23 N. R. Stuckert and R. T. Yang, *Environ. Sci. Technol.*, 2011, **45**, 10257–10264.
- E. G. Moschetta, M. A. Sakwa-Novak, J. L. Greenfield and C. W. Jones, *Langmuir*, 2015, 31, 2218–2227.
- A. Wagner, B. Steen, G. Johansson, E. Zanghellini, P. Jacobsson and P. Johansson, *Int. J. Spectrosc.*, 2013, 2013, 1–8.
- Y. Belmabkhout, R. Serna-Guerrero and A. Sayari, *Ind. Eng. Chem. Res.*, 2010, 49, 359–365.
- W. R. Lee, S. Y. Hwang, D. W. Ryu, K. S. Lim, S. S. Han, D. Moon, J. Choi and C. S. Hong, *Energy Environ. Sci.*, 2014, 7, 744–751.
- 28 P. Q. Liao, X. W. Chen, S. Y. Liu, X. Y. Li, Y. T. Xu, M. Tang, Z. Rui, H. Ji, J. P. Zhang and X. M. Chen, *Chem. Sci.*, 2016, 7, 6528–6533.

- 29 S. Choi, T. Watanabe, T. H. Bae, D. S. Sholl and C. W. Jones, J. Phys. Chem. Lett., 2012, 3, 1136–1141.
- 30 T. M. McDonald, W. R. Lee, J. A. Mason, B. M. Wiers, C. S. Hong and J. R. Long, J. Am. Chem. Soc., 2012, 134, 7056–7065.
- H. Li, K. Wang, D. Feng, Y. P. Chen, W. Verdegaal and H. C. Zhou, *ChemSusChem*, 2016, 9, 2832–2840.
- W. Chaikittisilp, J. D. Lunn, D. F. Shantz and C. W. Jones, *Chem. A Eur. J.*, 2011, 17, 10556–10561.
- 33 K. A. S. Abhilash, T. Deepthi, R. A. Sadhana and K. G. Benny, ACS Appl. Mater. Interfaces, 2015, 7, 17969–17976.
- 34 S. Choi, J. H. Drese, P. M. Eisenberger and C. W. Jones, *Environ. Sci. Technol.*, 2011, 45, 2420–2427.
- 35 Y. Kong, G. Jiang, Y. Wu, S. Cui and X. Shen, *Chem. Eng. J.*, 2016, **306**, 362–368.
- 36 F. Q. Liu, L. Wang, Z. G. Huang, C. Q. Li, W. Li, R. X. Li and W. H. Li, ACS Appl. Mater. Interfaces, 2014, 6, 4371–4381.
- V. Kulkarni, J. Parthiban and S. K. Singh, *Microporous Mesoporous Mater.*, 2024, 368, 112998.
- 38 S. Choi, M. L. Gray and C. W. Jones, *ChemSusChem*, 2011, 4, 628–635.
- A. Goeppert, M. Czaun, R. B. May, G. K. S. Prakash, G. A. Olah and S. R. Narayanan,
 J. Am. Chem. Soc., 2011, 133, 20164–20167.
- 40 H. T. Kwon, M. A. Sakwa-Novak, S. H. Pang, A. R. Sujan, E. W. Ping and C. W. Jones, *Chem. Mater.*, 2019, **31**, 5229–5237.
- 41 W. Chaikittisilp, H. J. Kim and C. W. Jones, *Energy and Fuels*, 2011, **25**, 5528–5537.
- 42 L. A. Darunte, A. D. Oetomo, K. S. Walton, D. S. Sholl and C. W. Jones, ACS Sustain. Chem. Eng., 2016, 4, 5761–5768.