# Supporting Information

# Rethinking the Stability of Metal Nanoclusters: the Individual versus

## the Collective

Di Zhang,<sup>‡</sup> Peiyao Pan,<sup>‡</sup> Xiaoqin Du, Xi Kang,<sup>\*</sup> Manzhou Zhu<sup>\*</sup>

Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui 230601, P. R. China.

‡D.Z. and P.P. contributed equally to this work.\*E-mails of corresponding authors: kangxi\_chem@ahu.edu.cn (X.K.); zmz@ahu.edu.cn (M.Z.)

This Supporting Information includes: Experimental Methods Scheme S1 Figures S1-S9 Tables S1-S2

### **Experimental Details**

#### Chemicals

Tetrachloroauric(III) acid (HAuCl<sub>4</sub>·3H<sub>2</sub>O, 99.99%, metals basis), tetraoctylammonium bromide (TOAB, 98%, ), Copper(II) acetylacetonate (Cu(C<sub>5</sub>H<sub>7</sub>O<sub>2</sub>)<sub>2</sub>, 99.99%, metals basis), sodium borohydride (NaBH<sub>4</sub>, 99.99%), triphenylphosphine (C<sub>18</sub>H<sub>15</sub>P, 97%), 1-adamantanethiol (C<sub>10</sub>H<sub>15</sub>SH, 99%), toluene (Ph-CH<sub>3</sub>, HPLC grade), methanol (CH<sub>3</sub>OH, HPLC grade), methylene chloride (CH<sub>2</sub>Cl<sub>2</sub>, HPLC grade grade), *n*-hexane (C<sub>6</sub>H<sub>14</sub>, HPLC grade).

#### Synthesis of Au<sub>2</sub>Cu<sub>6</sub>(S-Adm)<sub>6</sub>(PPh<sub>3</sub>)<sub>2</sub> nanocluster (Au<sub>2</sub>Cu<sub>6</sub>-Triclinic)

Au<sub>2</sub>Cu<sub>6</sub>(S-Adm)<sub>6</sub>(PPh<sub>3</sub>)<sub>2</sub> was synthesized as reported previously (Angew. Chem. Int. Ed. 2016, 55, 3611). Briefly, HAuCl<sub>4</sub>·3H<sub>2</sub>O (0.1576 g, 0.4 mmol) and TOAB (0.2 g, 0.37 mmol) were dissolved in 15 mL of toluene and vigorously stirred for 15 minutes. Then, PPh<sub>3</sub> (0.3 g, 1.14 mmol; dissolved in 10 ml CH<sub>3</sub>OH) was added. After 30 minutes, Cu(C<sub>5</sub>H<sub>7</sub>O<sub>2</sub>)<sub>2</sub> (0.06 g, 0.23 mmol) was dissolved in 20 mL CH<sub>3</sub>OH and added quickly. Then, Adm-SH (0.13g, 0.80 mmol; dissolved in 1 mL of toluene) and NaBH<sub>4</sub> (80mg, 2.1 mmol; dissolved in 1 mL of ice-cold water) were added simultaneously. The reaction was proceeded for 60 hours. The resulting solution was centrifuged to obtain the precipitate, which was washed several times with *n*-hexane. The precipitate was dissolved in the CH<sub>2</sub>Cl<sub>2</sub> and toluene with *v*:*v* of 2:1, and underwent the crystallization with a liquid diffusion approach by diffusing the *n*-hexane (as depicted in Scheme S1). After three days, red crystals were obtained, and the crystal structure of the Au<sub>2</sub>Cu<sub>6</sub>-Triclinic nanocluster was determined.

#### Synthesis of Au<sub>2</sub>Cu<sub>6</sub>(S-Adm)<sub>6</sub>(PPh<sub>3</sub>)<sub>2</sub> nanocluster (Au<sub>2</sub>Cu<sub>6</sub>-Trigonal)

For the crystallization system of  $Au_2Cu_6$ -Triclinic, after another seven days, the red crystals gradually disappeared, and meanwhile, several small-sized black and rhombic crystals appeared at the bottom of the single-crystal culture plate, proven to be the  $Au_2Cu_6$  with a trigonal crystalline system (i.e.,  $Au_2Cu_6$ -Trigonal).

#### Characterizations

The optical absorption (UV-vis) spectra of nanoclusters were recorded using an Agilent 8453 diode array spectrometer.

Photoluminescence spectra were measured on a FLUOROLOG-3-TAU spectrometer.

#### X-Ray Crystallography

The data collection for single-crystal X-ray diffraction (SC-XRD) of all nanocluster crystal samples was carried out on Stoe Stadivari diffractometer under nitrogen flow, using graphite-monochromatized Cu K $\alpha$  radiation ( $\lambda$  = 1.54186 Å). Data reductions and absorption corrections were performed using the SAINT and SADABS programs, respectively. The structure was solved by direct methods and refined with full-matrix least squares on F<sup>2</sup> using the SHELXTL software package. All non-hydrogen atoms were refined anisotropically, and all the hydrogen atoms were set in geometrically calculated positions and refined isotropically using a riding model. All crystal structures were treated with PLATON SQUEEZE. The CCDC number of the Au<sub>2</sub>Cu<sub>6</sub>-Triclinic nanocluster is 2347499. The CCDC number of Au<sub>2</sub>Cu<sub>6</sub>-Trigonal nanocluster is 2347507.



**Scheme S1.** The preparation, crystallization, and transformation of Au<sub>2</sub>Cu<sub>6</sub> nanoclusters.



**Figure S1.** Overall structures of  $Au_2Cu_6$ -Triclinic and  $Au_2Cu_6$ -Trigonal nanoclusters. Color labels: orange = Au; blue = Cu; red = S; magenta = P; grey = C; white = H.



**Figure S2.** Comparison of the corresponding bond lengths of Au<sub>2</sub>Cu<sub>6</sub>-Triclinic and Au<sub>2</sub>Cu<sub>6</sub>-Trigonal nanoclusters, including Au-Cu, Cu-S, Cu-Cu, Au-P, and Au-Au bonds.



**Figure S3.** A unique toluene molecule was observed in the crystalline lattice of  $Au_2Cu_6$ -Triclinic, and the mole ratio of  $Au_2Cu_6$ -Triclinic cluster molecule/toluene molecule in the crystalline lattice is 1:1. Color labels: orange = Au; blue = Cu; red = S; magenta = P; grey = C in cluster molecules; green = C in toluene molecules; white = H.



**Figure S4.** Due to the presence of the toluene molecule, several intermolecular C-H··· $\pi$ , H···H, and  $\pi$ ··· $\pi$  interactions were detected in the crystal lattice of Au<sub>2</sub>Cu<sub>6</sub>-Triclinic. Color labels: orange = Au; blue = Cu; red = S; magenta = P; grey = C in cluster molecules; dark red = C in toluene molecules; white = H.



**Figure S5.** Weak H····H interactions in Au<sub>2</sub>Cu<sub>6</sub>-Trigonal. Color labels: orange = Au; blue = Cu; red = S; magenta = P; grey = C; white = H.



**Figure S6.** Intramolecular C-H··· $\pi$  or H···H interactions in Au<sub>2</sub>Cu<sub>6</sub> nanoclusters. Color labels: orange = Au; blue = Cu; red = S; magenta = P; grey = C; white = H. Pink labels: intramolecular H···H interactions in Au<sub>2</sub>Cu<sub>6</sub>-Triclinic. Green labels: intramolecular C-H··· $\pi$  interactions in Au<sub>2</sub>Cu<sub>6</sub>-Triclinic. Green labels: intramolecular C-H··· $\pi$  interactions in Au<sub>2</sub>Cu<sub>6</sub>-Triclinic. Green labels: intramolecular C-H··· $\pi$  interactions in Au<sub>2</sub>Cu<sub>6</sub>-Triclinic.



**Figure S7.** Comparison of the photoluminescence of the two  $Au_2Cu_6$  nanocluster crystals. Black line: photoluminescence spectrum of  $Au_2Cu_6$ -Trigonal. Red line: photoluminescence spectrum of  $Au_2Cu_6$ -Triclinic. A 130 nm blue-shift on emission wavelength and a 3-fold enhancement on photoluminescence intensity were observed by comparing the emission of  $Au_2Cu_6$ -Triclinic to  $Au_2Cu_6$ -Trigonal.



**Figure S8.** The PL lifetime of  $Au_2Cu_6$ -Triclinic (1.747 µs) was slightly shorter than that of  $Au_2Cu_6$ -Trigonal (2.209 µs). Black line: photoluminescence decay of  $Au_2Cu_6$ -Trigonal. Red line: photoluminescence decay of  $Au_2Cu_6$ -Triclinic.



**Figure S9.** (A) The Au<sub>2</sub>Cu<sub>6</sub>-Triclinic crystals displayed good solubility in CH<sub>2</sub>Cl<sub>2</sub>, while the Au<sub>2</sub>Cu<sub>6</sub>-Trigonal was almost insoluble. Crystals of Au<sub>2</sub>Cu<sub>6</sub>-Triclinic also displayed good solubility in CHCl<sub>3</sub>, toluene, and tetrahydrofuran, and their optical absorptions were the same as that of CH<sub>2</sub>Cl<sub>2</sub>. By comparison, the Au<sub>2</sub>Cu<sub>6</sub>-Trigonal crystals were insoluble in such solutions. (B) The optical absorptions of the CH<sub>2</sub>Cl<sub>2</sub> solutions of the cluster crystals, which further suggested the good solubility of Au<sub>2</sub>Cu<sub>6</sub>-Triclinic and the insolubility of Au<sub>2</sub>Cu<sub>6</sub>-Trigonal.

**Table S1.** Crystal data and structure refinement for the  $Au_2Cu_6$ -Triclinic nanocluster. The CCDC number of the  $Au_2Cu_6$ -Triclinic nanocluster is 2347499.

| Molecular formula                           | $C_{110}H_{136}Au_2Cu_6N_2P_2S_6$                              |
|---------------------------------------------|----------------------------------------------------------------|
| Crystal system                              | triclinic                                                      |
| Space group                                 | <i>P</i> -1                                                    |
| a/Å                                         | 15.244(10)                                                     |
| b/Å                                         | 18.456(12)                                                     |
| c/Å                                         | 18.809(7)                                                      |
| α/°                                         | 74.97(4)                                                       |
| β/°                                         | 82.45(4)                                                       |
| γ/°                                         | 88.26(5)                                                       |
| Volume/Å <sup>3</sup>                       | 5066(5)                                                        |
| Z                                           | 2                                                              |
| $\rho_{calc}g/cm^3$                         | 1.631                                                          |
| μ/mm-1                                      | 8.455                                                          |
| F(000)                                      | 2508.0                                                         |
| Radiation                                   | CuK\a (λ = 1.54186)                                            |
| Index ranges                                | -17 ≤ h ≤ 12, -21 ≤ k ≤ 18, -21 ≤ l ≤ 21                       |
| 2θ range (°)                                | 9.926 to 124.998                                               |
| Measured reflections and unique reflections | 33167 [R <sub>int</sub> = 0.0493, R <sub>sigma</sub> = 0.0741] |
| Goodness-of-fiton F <sup>2</sup>            | 0.949                                                          |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 2.71/-1.53                                                     |
| Final R indexes [I>=2σ (I)]                 | R <sub>1</sub> = 0.0483, wR <sub>2</sub> = 0.1164              |
| Final R indexes [all data]                  | R <sub>1</sub> = 0.0658, wR <sub>2</sub> = 0.1219              |

**Table S2.** Crystal data and structure refinement for the  $Au_2Cu_6$ -Trigonal nanocluster. The CCDC number of the  $Au_2Cu_6$ -Trigonal nanocluster is 2347507.

| Molecular formula                           | $C_{96}H_{120}Au_2Cu_6P_2S_6$                                 |
|---------------------------------------------|---------------------------------------------------------------|
| Crystal system                              | trigonal                                                      |
| Space group                                 | R-3                                                           |
| a/Å                                         | 21.0039(6)                                                    |
| b/Å                                         | 21.0039(6)                                                    |
| c/Å                                         | 18.0081(6)                                                    |
| α/°                                         | 90                                                            |
| β/°                                         | 90                                                            |
| γ/°                                         | 120                                                           |
| Volume/Å <sup>3</sup>                       | 6880.2(5)                                                     |
| Z                                           | 3                                                             |
| $\rho_{calc}g/cm^3$                         | 1.668                                                         |
| μ/mm-1                                      | 9.284                                                         |
| F(000)                                      | 3462.0                                                        |
| Radiation                                   | CuK\a (λ = 1.54186)                                           |
| Index ranges                                | -24 ≤ h ≤ 16, -19 ≤ k ≤ 23, -20 ≤ l ≤ 13                      |
| 2θ range (°)                                | 13.788 to 124.994                                             |
| Measured reflections and unique reflections | 4428 [R <sub>int</sub> = 0.0287, R <sub>sigma</sub> = 0.0316] |
| Goodness-of-fiton F <sup>2</sup>            | 1.154                                                         |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 1.34/-2.04                                                    |
| Final R indexes [I>=2σ (I)]                 | R <sub>1</sub> = 0.0386, wR <sub>2</sub> = 0.1064             |
| Final R indexes [all data]                  | R <sub>1</sub> = 0.0419, wR <sub>2</sub> = 0.1260             |