Supplementary Information of

Room-temperature spin-valve devices without spacer layers based on Fe₃GaTe₂ van der Waals homojunctions

Yazhou Deng^{a, #}, Kejia Zhu^{a,#}, Mingjie Wang^a, Tao Hu^a, Yu Wang^a, Bin Lei^{a,*}, and Xianhui Chen^{b,c,d,*}

^a School of Physics and Optoelectronic Engineering, Anhui University, Hefei, Anhui 230601, China

^b CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

^c CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei, Anhui 230026, China

^d Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China

[#] These authors contributed equally to this work.

*Corresponding author. E-mails: leibin@ahu.edu.cn; chenxh@ustc.edu.cn.

Figure S1 (a) MR as functions of *H* at various temperatures ranging from 2 - 300 K (device S2). Obvious two-state MR behaviors are observed. (b) $I-V_{xx}$ characteristic curves at various temperatures, with the linear behavior indicating a favorable Ohmic contact of the device. The inset is an optical image of the Fe₃GaTe₂/Fe₃GaTe₂ device. (c) Temperature-dependent MR and spin polarization *P*, both of which exhibit a decrease with rising temperature.

Figure S2 (a) MR as functions of *H* at various temperatures ranging from 2 - 300 K (device S3). Obvious two-state MR behaviors are observed. (b) $I-V_{xx}$ characteristic curves at various temperatures, with the linear behavior indicating a favorable Ohmic contact of the device. The inset is an optical image of the Fe₃GaTe₂/Fe₃GaTe₂/Fe₃GaTe₂ device with the L3 flake splitting into two parts. (c) Temperature-dependent MR and spin polarization *P*, both of which exhibit a decrease with rising temperature.