Supporting Information

Three-layered nanoplates and amorphous/crystalline interface synergism boost CO₂ photoreduction on bismuth-oxychloride nanospheres

Malik Zeeshan Shahid^a, Zhihao Chen^a, Rashid Mehmood^b, Meng Zhang^a, Danrui Pan^a, Shishun Xu^a, Jin Wang^{a,c}, Ahmed Mahmoud Idris^{a,c*}, Zhengquan Li^{a,c*}

^aKey Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang 321004, P. R. China

^bState Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China

^cZhejiang Institute of Photoelectronics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China

Corresponding author

*Email: ahmed503@zjnu.edu.cn; zqli@zjnu.edu.cn

1. Experimental Section

1.1 Chemicals

Ethylene glycol (EG, 99.9 %) and ethanol (99.9 %) were purchased from Xilong Chemical Industry Incorporated Co. Ltd. Poly (sodium 4-styrene sulfonate) (PS, average Mw ~200,000, 30 wt % in H₂O) were obtained from Sigma-Aldrich. Bismuth nitrate pentahydrate (Bi(NO₃)₃· 5H₂O 99 %) were purchased from Macklin. Sodium chloride (NaCl, NaBr, NaI, 99.9 %), sodium sulfate (Na₂SO₄, 99.9 %), HAuCl₄, Na₂PdCl₄, and H₂PtCl₆, were purchased from Sinopharm Chemical Reagents Co. Ltd. Deionized water was prepared with a Milli-Q water purification system. All chemicals were analytical grade and used without further purification. The indium-doped tin oxide (ITO) glass substrates were obtained from China Southern Glass Co., Ltd., Shenzhen. Then they were well cleaned by ultrasonication in a solution containing deionized water, absolute ethanol, and isopropanol for 15 min sequentially.

1.2 Synthesis of BiOCI-NS and other related photocatalysts

For a typical synthesis of BiOCI-NS, 3 mL of 0.25 M Bi(NO₃)₃ aqueous solution and 9 mL deionized water were successively injected into 15 mL of EG, in a 50 mL plastic tube under vigorous magnetic stirring. Subsequently, 0.45 mL of PS was added dropwise into the above colourless solution. After stirring for 10 min, 2.5 mL of 3 M NaCl aqueous solution was introduced dropwise and then kept stirring for 30 min till forming a uniform colloid solution. The product was further collected through high rpm centrifugation and was washed repeatedly with water and ethanol. The product was dried at 50 °C overnight and stored for characterization and performance study. The final volume ratio of water: EG in the reaction mixture solution is 1:1, and the concentrations of PS, Bi(NO₃)₃, and NaCl were 25, 25, and 250 mM, respectively. Further experiments were conducted to expose the influences of reaction time on the formation of BiOCI-NS. Moreover, BiOBr-NS and BiOI-NS were also synthesized by changing the halogen precursor to NaBr and NaI. To synthesize BiOCI-MS, similar conditions (as BiOCI-

NS) were applied except for inserting PS in the reaction vessel. While EG and PS were absent from the system during the synthesis of BiOCl-NP. Furthermore, Au, Pd, or Pt-doped BiOCl-NS were synthesized by using the photo-deposition method (irradiated with Xe light for 30 minutes) with the aid of precursors HAuCl₄, Na₂PdCl₄, H₂PtCl₆ respectively.

1.3 Sample characterizations

The products were characterized by transmission electron microscopy (TEM, JEM-1400), field-emission scanning electron microscopy (FESEM, Sigma 500), energy dispersive X-ray spectroscopy (EDS), and high-resolution TEM (HRTEM, JEM-2100F). X-ray diffraction (XRD) was recorded on a Bruker D8 Focus X-ray diffractometer with Cu Ka radiation $(\lambda=0.15418 \text{ nm})$ by depositing the sample on an amorphous silicon substrate. X-ray photoelectron spectroscopy (XPS) was performed on a Thermo ESCALAB 250Xi X-ray photoelectron spectrometer with an Al Ka excitation source, and the binding energies of all elements were calibrated with the C1s peak at 284.8 eV. Nitrogen (N₂) adsorption-desorption isotherms were measured on a Micromeritics TriStar II 3020 instrument at 77 K. Before measurement, the samples were degassed and dried at 200 °C under vacuum for 4 h. The specific surface area was calculated according to the Brunauer-Emmett-Teller (BET) method. The diffuse reflectance spectra (DRS) of BiOCl samples were measured using a UV-Vis-NIR spectrophotometer (Shimadzu UV-3101PC) in the wavelength range of 200 to 600 nm. Photoluminescence (PL) spectra and PL lifetime were recorded on Edinburgh FLS920 Multifunction Steady State and Transient State Fluorescence. Electron paramagnetic resonance (EPR) was measured by Bruker EPR EMXplus. In situ diffuse reflection infrared Fourier transform spectroscopic (in-situ DRIFTS) measurements were conducted using diffuse reflectance infrared Fourier transform spectroscopy (Nicolet iS50, Thermo). The sample was placed in the in-situ reactor equipped with a temperature controller for heating. Firstly, the sample was heated to 100 °C for 2 h to remove the adsorbed water molecules. After being cooled down to room temperature, the background IR spectra were recorded as a reference.

Then CO₂ continuous flow (10 mL/min) was passed through the in-situ pool at room temperature, and after adsorption equilibrium, the sample was irradiated, and IR spectra were recorded simultaneously with a certain time interval.

1.4 Electrochemical procedures

Electrochemical measurements were measured on a Solartron Analytical electrochemical analyzer (ModuLab XM) in a standard three-electrode system by utilizing Pt foil as the counter electrode and Ag/AgCl (KCl, 3 M) as a reference electrode. The working electrodes were prepared by spreading DMF-dispersed slurries of samples (20 mg in a 0.1 mL DMF) onto the well-cleaned ITO glass substrates. Subsequently, the sample-coated substrates were dried in air for 10 min and then annealed at 100 °C for 30 min for electrochemical impedance spectroscopy (EIS) analysis and photocurrent test. In the photoelectrochemical measurements, all three electrodes were placed in a quartz cell containing 0.5 M Na₂SO₄ aqueous solution as the electrolyte which was bubbled by N₂ thoroughly to remove oxygen before the measurement. The transient photocurrent responses were conducted at a bias potential of 0.6 V under a 60 s on/off chopped illumination. The distance between the Xenon lamp and the working electrode was about 2 cm. EIS analysis was measured in the threeelectrode system and recorded over a frequency range from 0.01 Hz to 1 MHz with a current voltage amplitude of 0.01 V. Mott-Schtocky measurements were performed at various frequencies 1000 Hz, 1500 Hz, and 2000 Hz.

1.5 Photocatalytic CO₂ reduction

A Pyrex photoreactor was used to execute photocatalytic CO_2 reduction experiments. A simulated light source with a 300 W Xe lamp (Solaredge 700, 100 mW cm⁻², 25 °C) was used. The desired photocatalyst (10 mg) was homogeneously dispersed in water (10 ml), and the reactor was evacuated and then purged with CO_2 under continuous stirring several times to remove air completely. Finally, CO_2 gas was filled and the reactor was irradiated at given time intervals. The evolved product (CO) was quantified through periodic headspace gas analysis

(500 μ L) using gas chromatography (GC7820A, Agilent). CH₄ was measured using a flame ionization detector (FID), and CO was converted to CH₄ using a methanation reactor and analysed using the FID. To test the reusability of BiOCl-SP, the first cycle (8h) was completed following the procedure described above. For the second cycle, the reactor was evacuated, refilled with CO₂, and run again for 8 h, and the procedure was uninterruptedly performed for four consecutive cycles (approximately 32 h in total).

The selectivity of photocatalytic CO₂ Reduction for CO can be calculated by the following equation:

Selectivity (%) =
$$R_{CO} \times 2 / (R_{H2} \times 2 + R_{CO} \times 2 + R_{CH4} \times 8) \times 100\%$$

Where R_{H2} , R_{CO} and R_{CH4} are the production rates of photocatalytic reactions of H_2 , CO and CH₄.

The corresponding apparent quantum yield (AQY) of the BiOCl-NS for the product generation was calculated through the following equation:

$$AQY = \frac{N_e}{N_p} \times 100\%$$
$$N_e = [2 \times (n_{H2} + n_{CO}) + 8 \times n_{CH4}) \times N_A$$
$$N_p = \frac{IAt\lambda}{h_2}$$

hc

Where N_e is the total number of reactive transfer electrons, and N_p is the number of incident photons. where n_{H2}, n_{CO} and n_{CH4} is the H₂, CO and CH₄ production amount (15, 8 and 85 µmol) per hour under different band-pass filters, N_A is the Avogadro constant ($6.02 \times 10^{23} \text{ mol}^{-1}$), h is the Plank constant ($6.626 \times 10^{-34} \text{ J s}^{-1}$), c is vacuum light velocity ($3 \times 10^8 \text{ m s}^{-1}$), λ is the monochromatic light wavelength (420 nm), t is the light irradiation time (1 h = 3600 s), I is the incident monochromatic light intensity (30 W/m^2), A is the irradiation area (5.7 cm^2).

The turnover number (TON) of BiOCI-NS was estimated from the following formula;

TON= (Number of moles of CO evolution)/(Number of moles of BiOCl-NS taken)

1.6 DFT simulations

All DFT calculations in this work were performed by the Vienna Ab-initio Simulation Package (VASP). The electron-ion interaction was described by the projector augmented wave (PAW) pseudopotential method, and exchange-correlation energy was described by Perdew-Burke-Ernzerhof (PBE) in generalized gradient approximation (GGA). The Monkhorst-Pack grid mesh-based Brillouin zone k-points are set as $2\times 2\times 1$ for all surface structures with the cutoff energy of 450 eV and the equilibrium was reached when the forces on the relaxed atoms became less than 0.05 eV/Å. Furthermore, the (110) facet was selected as a typical catalysis active surface of BiOC1. To avoid interlayer interference, a 20 Å vacuum layer along the Z direction is employed.

2. Supplementary Figs. (S1-S20)

Fig. S1 The formation process of BiOCl-NS with real-time photographs, displaying the synthesis propagation with typical complex generation after the addition of EG, Water, PS, and Bi precursor.

Fig. S2 (a, b) TEM images of complex (PS-Bi(OCH₂CH₂OH) formed during the synthesis of BiOCl-NS at RT. (c) Corresponding powder and XRD pattern of composite.

The temporary composite thus restricts the sudden contact between bismuth precursors and halogen precursors. This leads to the controlled, non-agglomerated formation of 3D-structured BiOCl-NS.

Fig. S3 (a-d) Time-dependent structure evolution of BiOCl-NS.

The structural transition from the relatively open morphology to regularly-confined morphology. That confirms that innovatively controlling the synthesis route, can inhibit the conventional habitual growth to micron size.

Fig. S4 (a) XPS survey spectrum, (b) high-resolution XPS spectra of element Na 1s, ruling out the existence of PS residues on the surface of BiOCl-NS.

The absence of any Na1s signal further validates that PS has just participated temporarily during the formation process, and it has not been detected in BiOCl-NS, confirming the purity of the product.

Fig. S5 HRTEM images of BiOCl-NS (a) single nanoparticle, (b) three-layered nanoplates configuration.

Fig. S6 (a, b) AFM images and (c) corresponding height profile.

AFM image of a single particle of BiOCl-NS showing a distinct morphology, and size distribution of various nanoparticles. The profile is based on the individual particles' distance from one point to another, further confirming the diameter distribution of BiOCl-NS.

Fig. S7 EDS spectra highlight a relatively lower weight percentage of element O in BiOCl-NS.

Fig. S8 EPR spectra of BiOCI-NS after 10 min of light irradiation in comparison to dark conditions, demonstrating the existence of dynamic or light-induced defects.

Fig. S9 Comparative illustration of high-resolution *ex-situ* XPS spectra of (a) Bi 4f and (b) Cl 2p.

Fig. S10 (a) TEM image of BiOCl-MS displaying about ~2.5 um diameter and thickness of about ~60 nm. (b) Lattice distribution and (c) corresponding FFT pattern.

Fig. S11 (a) TEM image of BiOCl-NP demonstrating nanoplates randomly distributed horizontally and vertically with planar size range from 60-120 nm, and thickness ranging from 36-40 nm. (b) Lattice distribution and (c) corresponding FFT pattern.

Fig. S12 Mott Schottky analysis of (a) BiOCl-NS, (b) BiOCl-MS, and (c) BiOCl-NP measured at different frequencies. (d) Band alignment showing corresponding CB and VB positions of BiOCl-NS, BiOCl-MS, and BiOCl-NP.

The flat band (E_{FB}) for BiOCl-NS, BiOCl-MS and BiOCl-NP was found to be -1.25 V, -1.34 V, and -1.54 V against Ag/AgCl. As is known, BiOCl is an indirect semiconductor whose flat band is very close to VB, considering this, E_{CB} was calculated against NHE using the following formula [$E_{NHE} = E_{Ag/AgCl} + E^{o}_{Ag/AgCl} + 0.059$. pH]. Where, the value of $E_{Ag/AgCl}$ is -1.251 V for BiOCl-NS and -1.34 V for BiOCl-MS, and -1.54 V for BiOCl-NP, $E^{o}_{Ag/AgCl} = 0.199$ V, and pH= 7. Accordingly, the E_{CB} values were calculated to be -0.63 V, -0.72 V, and -0.92 Vs NHE for BiOCl-NP, BiOCl-MS and BiOCl-NS, respectively. Further, by using the equation $E_{VB} = E_g-E_{CB}$, the values of the valence band potential (E_{VB}) turned out to be 2.74 V, 2.54 V, and 2.02 V for BiOCl-NP, BiOCl-MS and BiOCl-NS, respectively.

Fig. S13 *In-situ* XPS spectra of Cl 2p under simulated light irradiation in comparison to the dark conditions.

Fig. S14 The characteristics of BiOCl-NS after reusability, (a) TEM and (b) XRD pattern.

The results confirm the morphological and phase purity after using BiOCl-NS for consecutive photocatalytic cycles.

Fig. S15 The GC graph from (a) FID detector and (b) TCD detector.

The results highlight the negligible detection of other evolved gases, particularly CH_4 or H_2 , ensuring high selectivity of BiOCl-NS towards CO.

Fig. S16 The results of the control experiments under various conditions to verify the origin of the produced products.

Additional discussion:

Several control experiments were designed and conducted to determine the origin of evolved CO. For instance, system-1 was employed without feedstock CO₂, and in consequence, no CO was detected as a product, validating that feedstock CO₂ is necessary and is the origin of produced CO. This result also confirms that BiOCI-NS does not self-degrade during PCR. System 2, using argon (Ar) instead of CO₂, also fails to produce any CO, again highlighting that CO₂ is required to produce CO. Likewise, system 3 certifies the importance of light irradiation, as no CO was detected when the light was absent. Other than that, PS residues were not detected on the surface of BiOCI-NS, and hence unable to participate in PCR, to further endorse this, system-4 was processed, wherein PS was used as a photocatalyst instead of BiOCI-NS. The result confirms that no CO was produced, confirming that PS cannot participate during PCR. Finally, CO in high yield was detected when normal conditions were employed in system-5, namely, BiOCI-NS as photocatalysts, H₂O as a source of the proton, CO₂ as a feedstock, and light irradiation.

Fig. S17 The result shows the oxidation of water at the VB end of BiOCl-NS, due to which an uninterrupted supply of protons became available during PCR.

Fig. S18 (a) Large-scale synthesis of BiOCl nanospheres (named BiOCl-NS-L), and corresponding collected product. (b) gram-scale weightage, and (c) corresponding TEM image of BiOCl-NS-L displaying similar morphology as obtained in small-scale.

Fig. S19 Digital photograph and corresponding TEM images of BiOCl-NS (a) before and (b) after storing for months.

Fig. S20 TEM images of (a) BiOBr-NS, and (c) BiOI-NS, synthesized by changing the halogen precursors with NaBr and NaI, respectively.

Fig. S21 The preliminary results highlight the further PCR optimization by introducing Nobel metals (Au, Pd, Pt) in BiOCI-NS, a valuable indicator for considering BiOCI-NS as a potential support material for diverse applications.

3. Supplementary Tables (S1-S4)

	Morphology	G (1)	Approximate	Uniform/Non-	Daf	
SD BIOA		Synthesis	dia (nm)	uniform	Ket.	
BiOCl	Flower-like	Solvothermal	~2 µm	Non-uniform	[1]	
D:OC1	Mesopores	Usida oth orangel	>10 µm	Non-uniform	[2]	
BioCl	flowers-like	nyuroulerinai				
BiOCl	Flower-like	Solvothermal	~1 µm	Mildly-uniform	[3]	
Bi-BiOC1	Flower-like	Mild-	~2 um	Non-uniform	[4]	
bi bioei	Tiower like	temperature	2 μπ			
H-BiOCl	Flower-like	Hydrothermal	~2 µm	Non-uniform	[5]	
BiOCl	Flower-like	Solvothermal	~2 µm	Non-uniform	[6]	
BiOCl/TiO ₂	Hierarchical	Solvothermal	~2 µm	Non-uniform	[7]	
BiOC1/CN	Aggregated	Mild-	~3 um	Non-uniform	[9]	
bioencir	sheet-like	Temperature	σμm		[0]	
P/Bi-BiOBr	Hierarchical	Solvothermal	~2 µm	Mildly-uniform	[9]	
BiVO ₄ /BiOBr	Hierarchical	Solvothermal	Solvothermal ~3 µm		[10]	
BiOCl _x Br _{1-x}	Hierarchical	colloidal	~3 µm	Non-uniform	[11]	
BiOBr	Flower-like	hydrothermal	~2.5 µm	Non-uniform	[12]	
BiOI	Hierarchical	Chemical-	~2.5 µm	Non-uniform	[13]	
BIOI		precipitation				
Pd/BiOI/MnOx	Hollow spheres	In-situ	>2 µm	Non-uniform	[14]	
		colloidal			r .1	
BiOBr/Bi2SiO5	Flower-like	Solvothermal	~2 µm	Non-uniform	[15]	
BiOBr/Cu _{2-x} S	Flower-like	Solvothermal	~1.2 µm	Non-uniform	[16]	
BiOBr _{0.75} I _{0.25} /BiOIO ₃	Hierarchical	Solvothermal-	$>2 \mu m$	Non-uniform	[17]	
BIOBr _{0.75} 1 _{0.25} /BIOIO ₃	meraremear	assisted			[-/]	
BiOBr _x Cl _{1-x}	Buttercup-like	Colloidal	8-10 µm	Non-uniform	[18]	
BiOI	Hierarchical	Solvothermal	1-3 µm	Non-uniform	[19]	
BiOCl _x Br _{1-x}	Flower-like	Solvothermal	~1.5 µm	Non-uniform	[20]	
BiOCl _{0.6} Br _{0.4}	Hierarchical	Solvothermal	~1.3 µm	Non-uniform	[21]	
Bi ₅ O ₇ I	Porous	Solvothermal-	~2.um	Non-uniform	[22]	
	Hierarchical	calcination	2 µ		[22]	
Anti-restack BiOCl	Hierarchitecture	Solvothermal	1–3µm	Non-uniform	[23]	
BiOI	Flower-like	Precipitation	2–5 µm	Non-uniform	[24]	
Bi-BiOCl _x	Hierarchical	Solvothermal	1–3µm	Non-uniform	[25]	
BiOCI-NS	Self-organized	Room-	~76 nm	Uniform	This work	
21001110	spheres	temperature	~/o nm	Omform	THIS WORK	

Table S1. Comparison of BiOCl-NS with 3D BiOX reported in the literature.

Table S2. The PCR over BiOCI-NS as compared with other recent state-of-the-art photocatalysts. The catalytic system does not involve any sensitizer, co-catalyst, scavengers, sacrificial agents, and organic solvents.

	Catalyst Light		CO evolving	CO ₂ source	
Photocatalyst	dosage	source	rate		Ref.
	(mg)		(µmol g ⁻¹ h ⁻¹)		
BiOIO2	20	300 W Xe	17 33	$H_2SO_4 + N_2HCO_2$	[26]
biolo3	20	(UV-vis)	17.55	112004 + 14a11003	[20]
Br-grafted	20	300 W Xe	8 12	$H_{2}SO_{4} + N_{2}HCO_{2}$	[27]
Bi ₂ O ₂ (OH)(NO ₃) NSs	20	(UV-vis)	0.12	$11_{2}30_{4} + 10a1100_{3}$	[27]
UN-BIOIO.	50	300 W Xe	5 42	$H_{2}SO_{1} + N_{2}HCO_{2}$	[28]
UN-BIOIO ₃	50	(UV-vis)	5.42	$\Pi_2 SO_4 + \Pi a \Pi CO_3$	[20]
Sr-Bi-Nh-TiO OVs	10	300 W Xe	11.7	$H_2SO_4 + NaHCO_3$	[20]
51201210211012 0 13		(UV-vis)			[27]
BiOBr	50	Xe (0.2 W	1 15	$H_{2}SO_{4} + N_{2}HCO_{2}$	[30]
DIODI	50	cm ⁻²)		$H_{2}SO_{4} + NanCO_{3}$	[30]
BiOI	50	300 W Xe	5 18	$H_2SO_4 + N_2HCO_2$	[31]
DIOI	50	(UV-vis)	5.10	$\Pi_2 SO_4 + \Pi a \Pi CO_3$	[51]
Bi12O17Cl2 NTs	30	300 W Xe	48.6	high-purity CO ₂	[32]
	50	(UV-vis)	40.0	lingin putting 002	[52]
BiOBr-OVs Atomic	10	300 W Xe	87.4	high-purity CO ₂	[33]
layers		(UV-vis)			
BiOBr _x Cl _{1-x}	10	Xe (0.2 W	15.86	high-purity CO ₂	[18]
		cm ⁻²)			
BiOCl	100	500 W Xe	1.01	high-purity CO ₂	[34]
Co-Bi ₃ O ₄ Br atomic	20	300 W Xe	107.1		[25]
layer	30	(UV-vis)	107.1	nign-purity CO ₂	[35]
BiOCl with surface	10	300 W Xe	80	high purity CO	[36]
pits	10	(UV-vis)	89	ingit-putity CO ₂	[30]
BiOCl-large surface	10	300 W Xe	11.42	high-purity CO ₂	[36]
area	10	(UV-vis)	11.42	lingii puilty CO ₂	[50]
BiOCl-abundant OVs	10	300 W Xe	23 45	high-purity CO ₂	[36]
BIOCI abundant OVS	10	(UV-vis)	23.13		[30]
BiOCl- ultrathin	10	300 W Xe	14 33	high-purity CO ₂	[36]
thickness	10	(UV-vis)	11.55		[30]
BiOC1-NS	10	300 W Xe	102.72	high-purity CO ₂	This work
210 01 110	10	(UV-vis)	102.72		THIS WOIR

Table S3. The PCR activity over BiOCI-NS in comparison with other recent state-of-the-art photocatalysts. The catalytic system is additive engaged e.g., it involves sensitizers, co-catalyst, scavengers, sacrificial agents, and organic solvents.

Photocatalyst	Light source	CO evolving (µmol.g ⁻¹ h ⁻¹)	Co-Catalyst	Hole scavenger	Reaction medium	Ref.
	300 W Xe					
$g-C_3N_4$	lamp (>400	17	Co-porphyrin	TEOA	CH ₃ CN	[37]
	nm)					
	300 W Xe					
CdS	lamp (400	50.4	Co-ZIF-9	TEOA	$CH_3CN + H_2O$	[38]
	nm)					
	300 W Xe		Single-atom	TEOA	CH ₃ CN	[39]
MOF-525	lamp (400	200.6				
	nm)		00			
	300 W Xe	286	Pt	Na ₂ S+	H ₂ O	[40]
o-PCN	lamp (>400	200		Na ₂ SO ₂		
	nm)			1102003		
UiO-66/C ₃ N ₄	300 W Xe		-	TEOA	CH ₃ CN	[41]
	lamp (>400	59.4				
	nm)					
Co-tuned Au	300 W Xe	3.451	-	TEOA	H ₂ O	[42]
	lam					
	(420 nm)					
Ni dopad CdS	300 W Xe		dinuclear			
quantum dots	lamp (>400	9.5	cobalt	TEOA	H ₂ O	[43]
quantani dots	nm)		complex			
	100 W Xe		-	-	Ethyl acetate	[44]
CsPbBr ₃ /GO	lamp (150	23.7				
	mW cm-2)					
CsPbBr ₃ /g- C ₃ N ₄	300 W Xe				Acetonitrile/water	
	lamp (420	149	-	-	and ethyl	[45]
	nm)				acetate/water	
Cs ₂ AgBiBr ₆	AM 1.5G,					
	150 mW	105	-	-	Ethyl acetate	[46]
	cm-2					
D:OCI NS	300 W Xe	102 72			H.O	This
	(UV-vis)	102.72				work

Photocatalyst	Light source	Stability (h)	CO evolving (µmol g ⁻¹ h ⁻¹)	Reaction medium	Ref.
BiOC1@Bi ₂ O ₃	>420 nm	36	30	H ₂ O	[47]
V _{Bi} -BiOBr NSs	UV-Vis	20	20.1	H ₂ O	[48]
Br-grafted	UV-Vis	12	8.12	H ₂ O (vapor)	[27]
Bi ₂ O ₂ (OH)(NO ₃) NSs BiOIO ₃ -OV	UV-Vis	12	17.33	H ₂ O (vapor)	[26]
Sr ₂ Bi ₂ Nb ₂ TiO ₁₂ -OV	UV-Vis	4	17.11	H ₂ O (vapor)	[29]
Bi ₄ Ti ₃ O ₁₂ -UOV	UV-Vis	4	11.7	H ₂ O (vapor)	[49]
BiOBr-Ovs Atomic Layers	>420 nm	60	87.4	H ₂ O	[33]
Bi ₁₂ O ₁₇ Cl ₂ NTs	UV-Vis	12	48.6	H ₂ O	[32]
Partially oxidized SnS ₂ atomic layers	>420 nm	12.28	20	H ₂ O (vapor)	[50]
BP@g-C ₃ N ₄	UV-Vis	8	6.54	H ₂ O (vapor)	[51]
SiC-NW/C	UV-Vis	9	5.87	H ₂ O (vapor)	[52]
Ni-SA-5/ZrO ₂	UV-Vis	25	11.8	H ₂ O (vapor)	[53]
BiOCI-NS	UV-Vis	32	102.72	H ₂ O	This work

Table S4. The BiOCl-NS stability in PCR compared with some state-of-the-art photocatalysts.

Table S5. The AQE of BiOCI-NS in PCR compared with some state-of-the-art BiOXphotocatalysts.

Photocatalyst	AQE (%)	References
S-BiOCl	0.28	[54]
C ₃ N ₄ /bismuthene/BiOCl	0.42	[55]
BiOBr-5	0.33	[56]
Bi ₄ O ₅ Br _x I _{2-x}	0.37	[57]
Bi ₄ O ₅ I-Fe30	0.12	[58]
Pt ₁ /BOB-V ₀	0.20	[59]
BiOIO ₃ -b ₃	0.10	[28]
BiOCI-NS	0.51	This work

4. Supplementary References

- S. Zhao, Y. Zhang, Y. Zhou, C. Zhang, X. Sheng, J. Fang and M. Zhang, ACS Sustain. Chem. Eng., 2017, 5, 1416-1424.
- 2 W. Li, Y. Mao, Z. Liu, J. Zhang, J. Luo, L. Zhang and Z. A. Qiao, *Adv. Mater.*, 2023, 35, 2300396.
- 3 C. Huang, J. Hu, S. Cong, Z. Zhao and X. Qiu, *Appl. Catal. B*, 2015, **174-175**, 105-112.
- 4 S. Gong, G. Zhu, R. Wang, F. Rao, X. Shi, J. Gao, Y. Huang, C. He and M. Hojamberdiev, *Appl. Catal. B*, 2021, **297**, 120413.
- 5 Q. Li, J. Ren, Y.-j. Hao, Y.-l. Li, X.-j. Wang, Y. Liu, R. Su and F.-t. Li, *Appl. Catal. B*, 2022, **317**, 121761.
- X. Ren, M. Gao, Y. Zhang, Z. Zhang, X. Cao, B. Wang and X. Wang, *Appl. Catal. B*, 2020, 274, 119063.
- W. Li, Y. Tian, H. Li, C. Zhao, B. Zhang, H. Zhang, W. Geng and Q. Zhang, *Appl. Catal. A*, 2016, **516**, 81-89.
- 8 X. Hu, Y. Zhang, B. Wang, H. Li and W. Dong, *Appl. Catal. B*, 2019, **256**, 117789.
- J.-y. Zhu, Y.-p. Li, X.-j. Wang, J. Zhao, Y.-s. Wu and F.-t. Li, ACS Sustain. Chem. Eng.,
 2019, 7, 14953–14961.
- H. Razavi-Khosroshahi, S. Mohammadzadeh, M. Hojamberdiev, S. Kitano, M.
 Yamauchi and M. Fuji, *Adv. Powder Technol.*, 2019, **30**, 1290-1296.
- 11 H. Gnayem and Y. Sasson, *ACS Catal.*, 2013, **3**, 186-191.
- W. Qingli, M. Zerui, Z. Yanfeng, Y. Tingjiang, M. Lingpeng and W. Xuxu, ACS Catal.,
 2022, 12, 4016-4025.
- 13 H. Huang, K. Xiao, X. Du and Y. Zhang, ACS Sustain. Chem. Eng., 2017, 5, 5253-5264.
- Y. Huang, H. Xu, H. Yang, Y. Lin, H. Liu and Y. Tong, *ACS Sustain. Chem. Eng.*, 2018, 6, 2751–2757.
- 15 J. Wang, G. Zhang, J. Li and K. Wang, ACS Sustain. Chem. Eng., 2018, 6, 14221-14229.

- X. Li, Q. Liu, F. Deng, J. Huang, L. Han, C. He, Z. Chen, Y. Luo and Y. Zhu, *Appl. Catal. B*, 2022, **314**, 121502.
- 17 C. Zeng, Y. Hu and H. Huang, ACS Sustain. Chem. Eng., 2017, 5, 3897-3905.
- 18 M. Gao, J. Yang, T. Sun, Z. Zhang, D. Zhang, H. Huang, H. Lin, Y. Fang and X. Wang, *Appl. Catal. B*, 2019, **243**, 734-740.
- 19 G. Dong, W. Ho and L. Zhang, *Appl. Catal. B*, 2015, **168-169**, 490–496.
- 20 W. Huo, W. Xu, Z. Guo, Y. Zhang and F. Dong, *Appl. Catal. B*, 2020, **284**, 119694.
- 21 W. J. Kim, D. Pradhan, B.-K. Min and Y. Sohn, *Appl. Catal. B*, 2014, **147**, 711-725.
- Y. Liu, G. Zhu, J. Gao, R. Zhu, M. Hojamberdiev, C. Wang, X. Wei and P. Liu, *Appl. Catal. B*, 2017, **205**, 421-432.
- Y. Mi, L. Wen, Z. Wang, D. Cao, Y. Fang and Y. Lei, *Appl. Catal. B*, 2015, 176-177, 331-337.
- M. Sun, Q. Wei, Y. Shao, B. Du, T. Yan, L. Yan and D. Li, *Appl. Catal. B*, 2018, 233, 250-259.
- H. Wang, W. Zhang, X. Li, J. Li, W. Cen, Q. Li and F. Dong, *Appl. Catal. B*, 2018, 225, 218-227.
- F. Chen, Z. Ma, L. Ye, T. Ma, T. Zhang, Y. Zhang and H. Huang, *Adv. Mater.*, 2020, 32, 1908350.
- 27 L. Hao, L. Kang, H. Huang, L. Ye, K. Han, S. Yang, H. Yu, M. Batmunkh, Y. Zhang and T. Ma, *Adv. Mater.*, 2019, **31**, 1900546.
- 28 F. Chen, H. Huang, L. Ye, T. Zhang, Y. Zhang, X. Han and T. Ma, *Adv. Funct. Mater.*,
 2018, 28, 1804284.
- H. Yu, J. Li, Y. Zhang, S. Yang, K. Han, F. Dong, T. Ma and H. Huang, *Angew. Chem. Int. Ed.*, 2019, 58, 3880-3884.
- 30 D. Wu, L. Ye, H. Y. Yip and P. K. Wong, *Catal. Sci. Technol.*, 2017, **7**, 265-271.
- 31 L. Ye, X. Jin, X. Ji, C. Liu, Y. Su, H. Xie and C. Liu, *Chem. Eng. J.*, 2016, **291**, 39-46.

- 32 J. Di, C. Zhu, M. Ji, M. Duan, R. Long, C. Yan, K. Gu, J. Xiong, Y. She, J. Xia, H. Li and Z. Liu, *Angew. Chem. Int. Ed.*, 2018, **57**, 14847-14851.
- J. Wu, X. Li, W. Shi, P. Ling, Y. Sun, X. Jiao, S. Gao, L. Liang, J. Xu, W. Yan, C.
 Wang and Y. Xie, *Angew. Chem. Int. Ed.*, 2018, 57, 8719-8723.
- 34 L. Zhang, W. Wang, D. Jiang, E. Gao and S. Sun, *Nano Res.*, 2014, **8**, 821–831.
- J. Di, C. Chen, S. Z. Yang, S. Chen, M. Duan, J. Xiong, C. Zhu, R. Long, W. Hao, Z.
 Chi, H. Chen, Y. X. Weng, J. Xia, L. Song, S. Li, H. Li and Z. Liu, *Nat. Commun.*, 2019, 10, 2840.
- 36 M. Z. Shahid, Z. Chen, R. Mehmood, S. Zheng, A. M. Idris and Z. Li, *Mater. Today Energy*, 2023, **34**, 101303.
- G. Zhao, H. Pang, G. Liu, P. Li, H. Liu, H. Zhang, L. Shi and J. Ye, *Appl. Catal. B*, 2017, 200, 141-149.
- 38 S. Wang and X. Wang, *Appl. Catal. B*, 2015, **162**, 494-500.
- H. Zhang, J. Wei, J. Dong, G. Liu, L. Shi, P. An, G. Zhao, J. Kong, X. Wang, X. Meng,
 J. Zhang and J. Ye, *Angew. Chem. Int. Ed.*, 2016, 55, 14310-14314.
- 40 A. Li, Q. Cao, G. Zhou, B. Schmidt, W. Zhu, X. Yuan, H. Huo, J. Gong and M. Antonietti, *Angew. Chem. Int. Ed.*, 2019, **58**, 14549-14555.
- 41 L. Shi, T. Wang, H. Zhang, K. Chang and J. Ye, *Adv. Funct. Mater.*, 2015, **25**, 5360-5367.
- X. Cui, J. Wang, B. Liu, S. Ling, R. Long and Y. Xiong, J. Am. Chem. Soc., 2018, 140, 16514-16520.
- J. Wang, T. Xia, L. Wang, X. Zheng, Z. Qi, C. Gao, J. Zhu, Z. Li, H. Xu and Y. Xiong,
 Angew. Chem. Int. Ed., 2018, 57, 16447-16451.
- 44 Y. F. Xu, M. Z. Yang, B. X. Chen, X. D. Wang, H. Y. Chen, D. B. Kuang and C. Y. Su,
 J. Am. Chem. Soc., 2017, 139, 5660-5663.

- M. Ou, W. Tu, S. Yin, W. Xing, S. Wu, H. Wang, S. Wan, Q. Zhong and R. Xu, *Angew. Chem. Int. Ed.*, 2018, **57**, 13570-13574.
- 46 L. Zhou, Y. F. Xu, B. X. Chen, D. B. Kuang and C. Y. Su, *Small*, 2018, **14**, 1703762.
- 47 L. Wang, X. Zhao, D. Lv, C. Liu, W. Lai, C. Sun, Z. Su, X. Xu, W. Hao, S. X. Dou and
 Y. Du, *Adv. Mater.*, 2020, **32**, 2004311.
- J. Di, C. Chen, C. Zhu, P. Song, J. Xiong, M. Ji, J. Zhou, Q. Fu, M. Xu, W. Hao, J. Xia,
 S. Li, H. Li and Z. Liu, ACS Appl. Mater. Interfaces, 2019, 11, 30786–30792.
- 49 L. Liu, H. Huang, F. Chen, H. Yu, N. Tian, Y. Zhang and T. Zhang, *Sci. Bull.*, 2020, 65, 934-943.
- 50 X. Jiao, X. Li, X. Jin, Y. Sun, J. Xu, L. Liang, H. Ju, J. Zhu, Y. Pan, W. Yan, Y. Lin and Y. Xie, *J. Am. Chem. Soc.*, 2017, **139**, 18044-18051.
- 51 C. Han, J. Li, Z. Ma, H. Xie, G. I. N. Waterhouse, L. Ye and T. Zhang, *Sci. China Mater.*,
 2018, 61, 1159-1166.
- 52 W. Weng, S. Wang, W. Xiao and X. W. D. Lou, *Adv. Mater.*, 2020, **32**, 2001560.
- 53 X. Xiong, C. Mao, Z. Yang, Q. Zhang, G. I. N. Waterhouse, L. Gu and T. Zhang, *Adv. Energy Mater.*, 2020, **10**, 2002928.
- 54 K. Yan, L. Chen, Y. Hu, T. Wang, C. Chen, C. Gao, Y. Huang and B. Li, *Nano Res.*, 2023, DOI: 10.1007/s12274-023-5888-3.
- 55 D. Zhang, X. Cui, L. Liu, Y. Xu, J. Zhao, J. Han and W. Zheng, ACS Appl. Mater. Interfaces, 2021, 13, 21582–21592.
- J. Meng, Y. Duan, S. Jing, J. Ma, K. Wang, K. Zhou, C. Ban, Y. Wang, B. Hu, D. Yu,
 L. Gan and X. Zhou, *Nano Energy*, 2022, **92**, 106671.
- 57 Y. Bai, L. Ye, T. Chen, P. Wang, L. Wang, X. Shi and P. K. Wong, *Appl. Catal. B*, 2017, 203, 633-640.
- 58 X. Jin, C. Lv, X. Zhou, H. Xie, S. Sun, Y. Liu, Q. Meng and G. Chen, *Nano Energy*, 2019, 64, 103955.

59 G. Ren, M. Shi, Z. Li, Z. Zhang and X. Meng, *Appl. Catal. B*, 2023, **327**, 122462.