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Details of MTPs:

MTPs is a type of local potentials. In this context, the total energy E of a sample 

containing N atoms is the sum of contributions Ω from the neighborhoods oi of each i-

th atom.
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The neighborhood of a central atom is defined as a set.
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In this context, the j-th atom is referred to as a neighboring atom within a 

predefined cutoff radius Rcut from the i-th (central) atom. zi and zj denote the types of 

the central and neighboring atoms, respectively, rij represents the corresponding 

interatomic vector, and Nneigh is the number of atoms in the neighborhood. The 

contribution of each central atom and its associated neighborhood to the total system 

energy is expressed as:
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Bα represents a basis function, where ξα is an MLIPs parameter. The basis 

functions are constructed based on all possible contractions of moment tensor 

descriptors, generating the following scalar:
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 is the radial component of potential MLIP, which depends solely on  , ,ij i jf r z z

the distance between atoms i and j and their atomic types. The radial component is 
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obtained by multiplying a set of radial basis functions  by a smoothing factor  ijr

. 2cut ijR r
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are the radial coefficients (parameters). The MTP parameters of ξα and ( )
, ,i jz zc 


are acquired by solving the minimization problem of:( )
, ,i jz zc 
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Linearized phonon BTE:

At the temperature T, the phonon distribution in the crystal obeys the Bose–

Einstein distribution in thermodynamic equilibrium state, as follows:
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A temperature gradient drives a phonon heat current by diverting phonon 

distribution from the equilibrium distribution, as follows:
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The resulting non-zero phonon heat flux J can be expressed as follows [1]:
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where λ includes the phonon branch index p and wave vector q; ωλ and vλ are the angular 

frequency and group velocity of phonon mode λ, respectively;  is the mean free F

displacement of phonons; N is the number of q points in the first Brillouin zone; V is 

the volume of the unit cell; and T is the temperature.

According to Fourier’s law , the coefficient of thermal ( )T  



  J

conductivity can be obtained as follows: 
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where  represents κ corresponding to the heat flow generated in the α direction by 

the temperature gradient in the β direction. 

The linearized BTE  can then be written as follows [2]:F

                           (10) 0
    F v Δ

where  represents the effective change in velocity after scattering and  is the Δ 0


lifetime of mode , the inverse of which is the scattering rate calculated by 

Matthiessen’s rule [3]. The phonon–phonon (anharmonic) and phonon–isotope 

scatterings with the natural isotopic distribution of diamond are considered. Total 



scattering rates  are determined as follows:01/ 

                           (11)anh iso0
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The phonon–phonon scattering rates require the identification of a set of three-

phonon scattering processes that satisfy phonon energy and momentum conservation 

conditions, as follows [4]:

 and                    (12)=  
    = + q q q K

Where , , and  represent the three phonons involved; K is the reciprocal lattice   

vector. K = 0 characterizes momentum-conserving normal processes and K ≠ 0 

corresponds to resistive umklapp processes [5]. However, the intrinsic three-phonon 

scattering rates are treated similarly (“+” represents absorption processions and “–” 

represents emission processions), as follows:
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The Dirac distribution  enforces the conservation of energy in    
    

the absorption and emission processes. The scattering matrix elements  can be V
  


calculated by third-order IFCs, as follows [6]:
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where  is the anharmonic IFCs matrix. It refers to movement of the two atoms in ijk


multiple directions in the supercell, followed by calculation of the Hellmann–Feynman 

(H–F) force after displacement. 

Finally, we obtain the anharmonic scattering rates  according to the anh1/ 

following equation:
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In addition to intrinsic three-phonon scattering, elastic scattering of phonons 

introduced by isotope impurities is present, as follows [7, 8]:
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Convergence tests:
Structural optimization parameter:
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Fig. S1. Convergence test



Structural parameter:
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Fig. S2. The structural parameters of NCCN during the strain process



Thermal conductivity:
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Fig. S3. Change of thermal conductivity with temperature



Phonon information:
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          (a) Zigzag strain
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          (b) Armchair strain
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           (c) Biaxial strain
Fig. S4. Distribution of phonon information (scattering rate, Grüneisen parameter, 

group velocity) in the first Brillouin zone for NCCN. Grüneisen parameters 
representing the anharmonic effect of phonons.
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