Supplementary Information

Surface Chemistry Altering Electronic Behaviours of Liquid Metal-Derived Tin Oxide Nanosheets

Xiaotian Wei¹, Chung Kim Nguyen¹, Patrick D. Taylor², Vaishnavi Krishnamurthi¹, Nitu Syed^{1,4}, Phuong Y. Le², Michelle J.S. Spencer³, Torben Daeneke¹* and Lei Bao¹*

¹ School of Engineering, RMIT University, Australia

² School of Science, RMIT University, Australia

³ ARC Centre of Excellence in Future Low-Energy Electronics Technologies,

School of Science, RMIT University, Australia

⁴ARC Centre of Excellence for Transformative Meta-Optical Systems,

The University of Melbourne, Australia

*E-mail: torben.daeneke@rmit.edu.au; lei.bao@rmit.edu.au

Figure S1. LM technique produced a SnOx nanosheet. (a) An optical microscopy image of obtained pristine SnO_x nanosheet depositing onto 300 nm SiO₂ coated Si substrate. (b) A photo obtained pristine SnO_x nanosheet in 1x1 cm² touch printed onto a 300 nm SiO₂ coated Si substrate.

Figure S2. XPS spectra in the Sn 3d region of as-synthesized pristine SnO_x nanosheet.

Figure S3. The thickness of the SnO_2 nanosheet dependency on the measured location, indicating the thickness consistency across the sample.

Figure S4. I-V curves of the two-terminal device based on SnO₂ and dodecane@SnO₂, respectively.

Figure S5. I-V curves of the two-terminal device based on SnO₂ and 1-octanol@SnO₂, respectively.

Figure S6. (a) Tauc plot analysis of optical bandgap for $SnO_2(black)$, 1-octanol@ $SnO_2(red)$, and dodecane@ $SnO_2(blue)$, respectively. (b) XPS valence band (VB-XPS) spectra with the Fermi levels to be 3.2 eV for $SnO_2(black)$, 2.9 eV for 1-octanol@ $SnO_2(red)$, and 3.2 eV for dodecane@ $SnO_2(blue)$.

Figure S7. I-V curves of the two-terminal device based on SnO_2 and ethanol@ SnO_2 , respectively.

Figure S8. I-V curves of the two-terminal device based on SnO₂ and 1-pentanol@SnO₂, respectively.

Figure S9. Top and side views of the optimised (a) pristine SnO₂(110) and (b) SnO₂(110)-VO surfaces.

Table S1. Summary of the binding configuration, binding energy and binding distance when the1-octanol molecule interacting with SnO₂ and SnO₂-V₀ surface.

Surface	Configuration	BE	$d(O_{ads}-Sn_{sub})$	d(Hads-Osub)	$d(H_{ads}-O_{ads})$
		(eV)	(Å)	(Å)	(Å)
SnO ₂ (110)	p 1	-2.10	2.06	1.02	1.75
	p_2	-1.85	1.44	1.02	1.70
SnO ₂ (110)-V ₀	d ₁	-2.24	2.06	1.01	1.77
	d_2	-1.21	2.47, 2.58	-	0.98
	d ₃	-1.19	2.53, 2.46	-	0.98
	d 4	-1.07	2.27	-	0.98

Figure S10. (a) I-V curves of the two-terminal device as indicated samples. (b) XPS of Sn 3d as indicated samples.

Figure S11. Transfer curves of FET devices of SnO2 and 1-octanol@SnO2. The highlighted regions indicate the fitting region for the corresponding slope of dI_{DS}/dV_{GS} for electron mobility calculations.