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Figure S1. DLS data of NPs upon exposure to HP, at three different scattering angles, 
i.e. 173° (back scattering), 90° (side scattering), and 17° (forward scattering). Data 
quality is evaluated as percentage of replicates with good quality reports, as indicated 
by the Malvern Software for DLS data acquisition. (a, b, c) Z-average, (d-f) peak 
location, and (g-i) PdI as functions of HP percentage.



Figure S2. (a) Correlation analysis between total protein amount in the hard corona of 
NPs by BCA assay and total lane intensity by SDS-PAGE. (b) protein amount by 
BCA, (c) total lane intensity by SDS-PAGE, and (d) intensity by nano-liquid 
chromatography mass spectrometry experiments for unmodified PS NPs and NH2-PS 
NPs upon exposure to 30% HP. The obtained results clearly indicate a robust 
correspondence between BCA, SDS-PAGE, and proteomics analyses.



Figure S3. FT-IR analysis of pristine and coronated NPs. (a) Reference FT-IR 
spectrum for Polystyrene, as reported on spectrabase.com (John Wiley & Sons, Inc.). 
FT-IR spectra of (b) PS, (c) PS-NH2, (d) HP, (e) coronated PS, and (f) coronated PS-
NH2. Asterisks indicate HP peaks found in coronated samples and absent in pristine 
systems.

FT-IR spectroscopy provided a chemical characterization of both pristine systems and 
nanoparticles (NPs) exposed to 30% human plasma (HP), hereafter referred to as 
coronated particles. Results are shown in Fig. S3 and clearly indicate that coronated 
particles exhibit distinct HP signatures in their FT-IR spectra, demonstrating the 
formation of a protein corona on their surfaces. In detail, a nominal spectrum for 
Polystyrene (Fig. S3 a) was used as a reference. Our experimental data for PS (Fig. S3 
b) and PS-NH2 showed very good agreement with the reference. The main 
discriminant feature between them was a characteristic peak for the amine-modified 
system, located at 1730 cm⁻¹, likely attributable to surface functionalization. Other 
notable peaks included C-H out-of-plane bending vibration absorption (698 cm⁻¹, 756 
cm⁻¹), C=C stretching vibration absorption (1450 cm⁻¹, 1490 cm⁻¹, 1600 cm⁻¹), and C-
H stretching vibration absorption (from 2800 cm⁻¹ to 3060 cm⁻¹) 1. Besides the 
observed matching between the experimental spectra and the reference, we note that 
the measured FT-IR curve for PS is very similar to those reported in previous studies. 
For instance, the measured locations of FT-IR peaks in Fig. S3 strongly agree with 
those reported by Fang et al. in 2009 1. Similarly, the experimental FT-IR spectrum 
for HP (Fig. S3 d) matches those reported in previous studies, e.g. by Araùjo et al in 
20022. HP spectrum exhibited a large number of absorption peaks, due to the intrinsic 
complexity of the biological specimen. Among them, two main contributions can be 
distinugished, i.e. amide I (1650 cm−1, C=O stretching vibration) and amide II band 



(1539 cm−1, N–H bending and C–N stretching) 3. Notably, these two peaks are 
differentially present in the spectra of both coronated PS (Fig. S3 e) and coronated 
PS-NH2 (Fig. S3 f) systems, and provide deemonstration of corona formation at the 
particle surface.



Table S1 List of identified proteins in the corona of unmodified PS NPs and NH-2 PS 
NPs by nano-liquid chromatography tandem mass spectrometry analysis. Proteins are 
sorted in decreasing order of RPAs for the amine-modified systems.

Protein name Abbreviation RPA (%) in PS NP 
corona

RPA (%) in PS-
NH2 corona

Apolipoprotein A-I APOA1 19.20% ± 4.74% 21.11% ± 0.30%
Apolipoprotein A-II APOA2 16.98% ± 4.01% 13.25% ± 1.17%
Apolipoprotein C-III APOC3 3.80% ± 3.36% 13.13% ± 0.28%
Serum albumin ALB 3.76% ± 0.71% 11.39% ± 0.42%
Apolipoprotein C-II APOC2 2.74% ± 2.56% 7.31% ± 0.70%
Vitronectin VTN 0.27% ± 0.22% 6.67% ± 1.01%
Clusterin CLU 0.43% ± 0.27% 3.91% ± 0.06%
Apolipoprotein C-I APOC1 1.53% ± 0.67% 2.85% ± 0.10%
Apolipoprotein E APOE 1.28% ± 0.47% 2.50% ± 0.40%
Ig kappa chain C region IGKC 1.22% ± 0.80% 2.15% ± 0.11%
Apolipoprotein A-IV APOA4 0.08% ± 0.00% 1.71% ± 0.39%
Ig gamma-1 chain C 
region

IGHG1 0.80% ± 0.99% 1.29% ± 0.40%

Keratin, type II 
cytoskeletal 1

KRT1 0.51% ± 0.03% 1.08% ± 0.12%

Prothrombin F2 0.00% ± 0.00% 1.07% ± 0.02%
Serum 
paraoxonase/arylesterase 
1

PON1 0.00% ± 0.00% 0.96% ± 0.04%

Fibrinogen gamma chain FGG 13.05% ± 0.51% 0.94% ± 0.14%
C4b-binding protein alpha 
chain

C4BPA 0.34% ± 0.00% 0.89% ± 0.04%

Ig gamma-3 chain C 
region

IGHG3 1.66% ± 0.05% 0.82% ± 0.03%

Ig mu chain C region IGHM 0.17% ± 0.10% 0.71% ± 0.15%
Fibrinogen alpha chain FGA 11.51% ± 1.68% 0.68% ± 0.15%
Immunoglobulin lambda-
like polypeptide 5

IGLL5 3.91% ± 0.92% 0.67% ± 0.12%

Keratin, type I 
cytoskeletal 10

KRT10 0.37% ± 0.04% 0.60% ± 0.13%

Immunoglobulin lambda 
constant 3 

IGLC3 2.79% ± 0.58% 0.59% ± 0.11%

Fibrinogen beta chain FGB 6.38% ± 4.22% 0.54% ± 0.06%
Complement C4-B C4B;C4A 0.13% ± 0.05% 0.48% ± 0.06%
Keratin, type I 
cytoskeletal 9

KRT9 0.14% ± 0.01% 0.34% ± 0.07%

Haptoglobin HP 0.48% ± 0.26% 0.33% ± 0.19%
Hyaluronan-binding HABP2 0.00% ± 0.00% 0.31% ± 0.07%



protein 2
Ig alpha-1 chain C region IGHA1;IGHA2 0.22% ± 0.11% 0.30% ± 0.00%
Alpha-1-antitrypsin SERPINA1 0.10% ± 0.05% 0.20% ± 0.06%
Serum amyloid A-4 
protein

SAA4 0.31% ± 0.06% 0.18% ± 0.03%

Complement C1q 
subcomponent subunit C

C1QC 0.80% ± 0.12% 0.15% ± 0.01%

Complement C3 C3 0.59% ± 0.06% 0.13% ± 0.02%
Ig gamma-2 chain C 
region

IGHG2 0.07% ± 0.08% 0.11% ± 0.03%

Keratin, type II 
cytoskeletal 2 epidermal

KRT2 0.15% ± 0.03% 0.11% ± 0.05%

Apolipoprotein D APOD 0.00% ± 0.00% 0.09% ± 0.08%
Apolipoprotein C-IV APOC4 0.01% ± 0.01% 0.09% ± 0.12%
Serotransferrin TF 0.29% ± 0.18% 0.08% ± 0.00%
Ceruloplasmin CP 0.01% ± 0.02% 0.06% ± 0.01%
Serum amyloid A-1 
protein

SAA1;SAA2 0.16% ± 0.20% 0.04% ± 0.06%

Properdin CFP 0.20% ± 0.03% 0.03% ± 0.04%
Vitamin K-dependent 
protein S

PROS1 0.02% ± 0.02% 0.03% ± 0.01%

Alpha-2-HS-glycoprotein AHSG 0.15% ± 0.06% 0.02% ± 0.00%
Complement C1s 
subcomponent

C1S 0.03% ± 0.01% 0.01% ± 0.00%

Glutathione peroxidase 3 GPX3 0.02% ± 0.02% 0.01% ± 0.02%
Protein AMBP AMBP 0.00% ± 0.00% 0.01% ± 0.02%
Apolipoprotein B-100 APOB 0.01% ± 0.01% 0.01% ± 0.00%
Alpha-2-macroglobulin A2M 0.04% ± 0.01% 0.01% ± 0.00%
Inter-alpha-trypsin 
inhibitor heavy chain H2

ITIH2 0.03% ± 0.01% 0.01% ± 0.01%

Apolipoprotein L1 APOL1 0.01% ± 0.02% 0.01% ± 0.01%
Apolipoprotein(a) LPA 0.00% ± 0.00% 0.01% ± 0.01%
Complement factor H CFH 0.23% ± 0.06% 0.01% ± 0.00%
Complement C1r 
subcomponent

C1R 0.05% ± 0.00% 0.00% ± 0.01%

Keratin, type I 
cytoskeletal 13

KRT13 0.00% ± 0.00% 0.00% ± 0.00%

Inter-alpha-trypsin 
inhibitor heavy chain H1

ITIH1 0.01% ± 0.02% 0.00% ± 0.00%

Tetranectin CLEC3B 0.03% ± 0.04% 0.00% ± 0.00%
Hornerin HRNR 0.00% ± 0.00% 0.00% ± 0.00%
Complement component 
C9

C9 0.00% ± 0.00% 0.00% ± 0.00%

Gelsolin GSN 0.31% ± 0.00% 0.00% ± 0.00%



Ig lambda chain V region 
4A

IGLV7-46 0.05% ± 0.07% 0.00% ± 0.00%

Ig lambda chain V-III 
region LOI

IGLV3-9;IGLV3-
12

0.01% ± 0.01% 0.00% ± 0.00%

Ig lambda-7 chain C 
region

IGLC7 0.03% ± 0.04% 0.00% ± 0.00%

CD5 antigen-like CD5L 0.01% ± 0.00% 0.00% ± 0.00%
Plasminogen PLG 0.06% ± 0.02% 0.00% ± 0.00%
Complement factor B CFB 0.03% ± 0.02% 0.00% ± 0.00%
Alpha-1-antichymotrypsin SERPINA3 0.01% ± 0.01% 0.00% ± 0.00%
Complement C5 C5 0.00% ± 0.00% 0.00% ± 0.00%
Kininogen-1 KNG1 0.06% ± 0.05% 0.00% ± 0.00%
Ig kappa chain V-III 
region B6

IGKV3D-20 0.03% ± 0.01% 0.00% ± 0.00%

Ig lambda chain V-III 
region SH

0.04% ± 0.06% 0.00% ± 0.00%

Ig gamma-4 chain C 
region

IGHG4 0.05% ± 0.00% 0.00% ± 0.00%

Complement C1q 
subcomponent subunit A

C1QA 0.39% ± 0.13% 0.00% ± 0.00%

Complement C1q 
subcomponent subunit B

C1QB 0.43% ± 0.31% 0.00% ± 0.00%

Beta-2-glycoprotein 1 APOH 0.47% ± 0.01% 0.00% ± 0.00%
Fibronectin FN1 0.08% ± 0.03% 0.00% ± 0.00%
Hemopexin HPX 0.03% ± 0.01% 0.00% ± 0.00%
Plasma kallikrein KLKB1 0.04% ± 0.04% 0.00% ± 0.00%
Histidine-rich 
glycoprotein

HRG 0.01% ± 0.02% 0.00% ± 0.00%

Heparin cofactor 2 SERPIND1 0.01% ± 0.00% 0.00% ± 0.00%
Alpha-2-antiplasmin SERPINF2 0.01% ± 0.00% 0.00% ± 0.00%
Hemoglobin subunit alpha HBA1;HBZ 0.07% ± 0.04% 0.00% ± 0.00%
Complement factor H-
related protein 1

CFHR1 0.04% ± 0.00% 0.00% ± 0.00%

Inter-alpha-trypsin 
inhibitor heavy chain H4

ITIH4 0.63% ± 0.30% 0.00% ± 0.00%

Testis- and ovary-specific 
PAZ domain-containing 
protein 1

TOPAZ1 0.01% ± 0.01% 0.00% ± 0.00%

Proteoglycan 4 PRG4 0.01% ± 0.01% 0.00% ± 0.00%



Figure S4. The effect of PS NPs, PS-NH2 NPs and their protein-coated forms on 
HEK-293 cell viability. Cell viability of HEK-293 cells upon incubation with various 
concentrations of pristine PS or protein-coated PS for 72 h. Results are expressed as 

the percentage of living cells to untreated cells. Data are reported as mean ± SD, n≥6. 

* p<0.05; ** p<0.01; ****p<0.0001, ordinary one-way ANOVA followed by Dunnett 
test.



Figure S5. Statistical Analysis of cytotoxicity. Cell viability of SK-BR-3 cells upon 
incubation with various concentrations of pristine PS or protein-coated PS for 72 h. 
Results are expressed as the percentage of living cells to untreated cells. Data are 

reported as mean ± SD, n≥6. * p<0.05; ** p<0.01; ****p<0.0001, ordinary one-way 

ANOVA followed by Dunnett test.



Fig S6. Gating strategy and histograms of the flow cytometry experiments. The 
results were obtained from two independent experiments (panel a-d from experiment 
1 and e-h from experiment 2). SK-BR-3 cells were analyzed by forward scatter and 
sideward scatter to identify the cell population if interest and exclude cell debris, 
gating strategy was represented in panel a and e, and the gating was applied to all 
samples. PS-NH2 NPs were labeled with an orange dye (Approximate Exi/Emi of 
481/644 nm), and the events of the cell gate were analyzed for their fluorescence 
(excitation 488 nm, detected in FL1 channel, band-pass filter 530/30 nm). Within 
each experiment, we have 4 replicates, and the fluorescence distribution of control 
group (b, f), treated with pristine PS-NH2 group (c,g), and treated with coronated PS-
NH2 group (d, h).



Fig. S7. Confocal microscopy images of 100 nm PS-NH2 NPs internalized by 
NIH3T3 fibroblasts. NIH3T3 fibroblasts were treated under the same condition as 

SK-BR-3 cells, red represents CellMask™, blue represents nucleus stained with 

Hoechst 33,342, protein coated PS-NH2 NPs and pristine PS-NH2 NPs are indicated in 
green. Scale bars 10 µm. The results suggested the similar trend as observed in SK-
BR-3 cells: pristine PS-NH2 NPs tend to stick to the cell membrane, while protein 
pre-coating enhance their cellular uptake. 



Fig S8. Cellular release of internalized PS-NH2. SK-BR-3 cells were exposed to 
12.5 µg/mL pristine or coronated PS-NH2 NPs for 4h. After the exposure, the culture 
medium was removed, the cells were washed gently with PBS three times and 
replaced with PS-NH2-free medium, 24 h after the replacement, cellular uptake was 
measured by PS-NH2 positive cell percentage using flow cytometry. Data are reported 

as mean ± SD, n≥4. * p<0.05; ** p<0.01; ****p<0.0001, ordinary one-way ANOVA 

followed by Tukey test.



Fig. S9. Original western blots from which Figure 6 (Panel a) derived. Analysis of 
the expression levels of HER2, pHER2, AKT, pAKT, ERK, pERK and β-actin in SK-
BR-3 cells treated or not with 12.5 μg/mL pristine or protein-coated PS-NH2 for 24 h. 
Equal amounts of protein (20 μg) were loaded, and β-actin was used as loading 
control. Since β-actin and ERK have the same Molecular Weight, the membranes 
were stripped and re-blotted to detect β-actin. Samples were loaded as following order: 
control in duplicate, cell treated with 12.5 μg/mL PS-NH2 in triplicate and coronated 
PS-NH2 in triplicate.
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