Electronic Supplementary Information

Protein Corona Alleviates Adverse Biological Effects of Nanoplastics in Breast Cancer Cells

Siyao Xiao ^a, Junbiao Wang ^b, Luca Digiacomo ^a, Augusto Amici ^b, Valentina De Lorenzi^c, Licia Anna Pugliese^c, Francesco Cardarelli ^c, Andrea Cerrato,^d Aldo Laganà,^d Lishan Cui,^{e,f} Massimiliano Papi,^{e,f} Giulio Caracciolo ^a, Cristina Marchini *^b, Daniela Pozzi *^a

^a NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy

^b School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy

^c Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy

^d Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy

^e Department of Neuroscience, Catholic University of the Sacred Heart, Largo Francesco Vito 1, Rome 00168, Italy

^f Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome 00168, Italy

* corresponding authors: <u>cristina.marchini@unicam.it</u> (C.M.); <u>daniela.pozzi@uniroma1.it</u> (D.P.)

Figure S1. DLS data of NPs upon exposure to HP, at three different scattering angles, i.e. 173° (back scattering), 90° (side scattering), and 17° (forward scattering). Data quality is evaluated as percentage of replicates with good quality reports, as indicated by the Malvern Software for DLS data acquisition. (a, b, c) Z-average, (d-f) peak location, and (g-i) PdI as functions of HP percentage.

Figure S2. (a) Correlation analysis between total protein amount in the hard corona of NPs by BCA assay and total lane intensity by SDS-PAGE. (b) protein amount by BCA, (c) total lane intensity by SDS-PAGE, and (d) intensity by nano-liquid chromatography mass spectrometry experiments for unmodified PS NPs and NH2-PS NPs upon exposure to 30% HP. The obtained results clearly indicate a robust correspondence between BCA, SDS-PAGE, and proteomics analyses.

Figure S3. FT-IR analysis of pristine and coronated NPs. (a) Reference FT-IR spectrum for Polystyrene, as reported on spectrabase.com (John Wiley & Sons, Inc.). FT-IR spectra of (b) PS, (c) PS-NH₂, (d) HP, (e) coronated PS, and (f) coronated PS-NH₂. Asterisks indicate HP peaks found in coronated samples and absent in pristine systems.

FT-IR spectroscopy provided a chemical characterization of both pristine systems and nanoparticles (NPs) exposed to 30% human plasma (HP), hereafter referred to as coronated particles. Results are shown in Fig. S3 and clearly indicate that coronated particles exhibit distinct HP signatures in their FT-IR spectra, demonstrating the formation of a protein corona on their surfaces. In detail, a nominal spectrum for Polystyrene (Fig. S3 a) was used as a reference. Our experimental data for PS (Fig. S3 b) and PS-NH₂ showed very good agreement with the reference. The main discriminant feature between them was a characteristic peak for the amine-modified system, located at 1730 cm⁻¹, likely attributable to surface functionalization. Other notable peaks included C-H out-of-plane bending vibration absorption (698 cm⁻¹, 756 cm⁻¹), C=C stretching vibration absorption (1450 cm⁻¹, 1490 cm⁻¹, 1600 cm⁻¹), and C-H stretching vibration absorption (from 2800 cm⁻¹ to 3060 cm⁻¹)¹. Besides the observed matching between the experimental spectra and the reference, we note that the measured FT-IR curve for PS is very similar to those reported in previous studies. For instance, the measured locations of FT-IR peaks in Fig. S3 strongly agree with those reported by Fang et al. in 2009¹. Similarly, the experimental FT-IR spectrum for HP (Fig. S3 d) matches those reported in previous studies, e.g. by Araùjo et al in 2002². HP spectrum exhibited a large number of absorption peaks, due to the intrinsic complexity of the biological specimen. Among them, two main contributions can be distinugished, i.e. amide I (1650 cm⁻¹, C=O stretching vibration) and amide II band

(1539 cm⁻¹, N–H bending and C–N stretching) ³. Notably, these two peaks are differentially present in the spectra of both coronated PS (Fig. S3 e) and coronated PS-NH₂ (Fig. S3 f) systems, and provide deemonstration of corona formation at the particle surface.

Table S1 List of identified proteins in the corona of unmodified PS NPs and NH-2 PS NPs by nano-liquid chromatography tandem mass spectrometry analysis. Proteins are sorted in decreasing order of RPAs for the amine-modified systems.

Protein name	Abbreviation	RPA (%) in PS NP	RPA (%) in PS-
		corona	NH2 corona
Apolipoprotein A-I	APOA1	$19.20\% \pm 4.74\%$	$21.11\% \pm 0.30\%$
Apolipoprotein A-II	APOA2	$16.98\% \pm 4.01\%$	$13.25\% \pm 1.17\%$
Apolipoprotein C-III	APOC3	3.80% \pm 3.36%	$13.13\% \pm 0.28\%$
Serum albumin	ALB	3.76% ± $0.71%$	$11.39\% \pm 0.42\%$
Apolipoprotein C-II	APOC2	$2.74\% \pm 2.56\%$	7.31% ± 0.70%
Vitronectin	VTN	$0.27\% \pm 0.22\%$	6.67% ± $1.01%$
Clusterin	CLU	$0.43\% \pm 0.27\%$	3.91% ± 0.06%
Apolipoprotein C-I	APOC1	1.53% \pm 0.67%	2.85% ± $0.10%$
Apolipoprotein E	APOE	$1.28\% \pm 0.47\%$	$2.50\% \pm 0.40\%$
Ig kappa chain C region	IGKC	$1.22\% \pm 0.80\%$	$2.15\% \pm 0.11\%$
Apolipoprotein A-IV	APOA4	$0.08\% \pm 0.00\%$	$1.71\% \pm 0.39\%$
Ig gamma-1 chain C	IGHG1	$0.80\% \pm 0.99\%$	$1.29\% \pm 0.40\%$
region			
Keratin, type II	KRT1	0.51% \pm 0.03%	1.08% ± $0.12%$
cytoskeletal 1			
Prothrombin	F2	$0.00\% \pm 0.00\%$	1.07% ± $0.02%$
Serum	PON1	$0.00\% \pm 0.00\%$	$0.96\% \pm 0.04\%$
paraoxonase/arylesterase			
1			
Fibrinogen gamma chain	FGG	$13.05\% \pm 0.51\%$	0.94% ± $0.14%$
C4b-binding protein alpha	C4BPA	$0.34\% \pm 0.00\%$	$0.89\% \pm 0.04\%$
chain			
Ig gamma-3 chain C	IGHG3	1.66% ± $0.05%$	0.82% ± $0.03%$
region			
Ig mu chain C region	IGHM	0.17% ± $0.10%$	0.71% ± $0.15%$
Fibrinogen alpha chain	FGA	$11.51\% \pm 1.68\%$	0.68% ± $0.15%$
Immunoglobulin lambda-	IGLL5	$3.91\% \pm 0.92\%$	0.67% ± $0.12%$
like polypeptide 5			
Keratin, type I	KRT10	$0.37\% \pm 0.04\%$	0.60% ± $0.13%$
cytoskeletal 10			
Immunoglobulin lambda	IGLC3	2.79% \pm 0.58%	0.59% ± $0.11%$
constant 3			
Fibrinogen beta chain	FGB	$6.38\% \pm 4.22\%$	0.54% \pm 0.06%
Complement C4-B	C4B;C4A	0.13% ± $0.05%$	$0.48\% \pm 0.06\%$
Keratin, type I	KRT9	0.14% ± $0.01%$	0.34% \pm 0.07%
cytoskeletal 9			
Haptoglobin	HP	0.48% \pm 0.26%	0.33% ± $0.19%$
Hyaluronan-binding	HABP2	0.00% ± $0.00%$	0.31% ± $0.07%$

protein 2							
Ig alpha-1 chain C region	IGHA1;IGHA2	0.22%	±	0.11%	0.30%	±	0.00%
Alpha-1-antitrypsin	SERPINA1	0.10%	±	0.05%	0.20%	±	0.06%
Serum amyloid A-4	SAA4	0.31%	±	0.06%	0.18%	±	0.03%
protein							
Complement C1q	C1QC	0.80%	±	0.12%	0.15%	±	0.01%
subcomponent subunit C							
Complement C3	C3	0.59%	±	0.06%	0.13%	±	0.02%
Ig gamma-2 chain C	IGHG2	0.07%	±	0.08%	0.11%	±	0.03%
region							
Keratin, type II	KRT2	0.15%	±	0.03%	0.11%	±	0.05%
cytoskeletal 2 epidermal							
Apolipoprotein D	APOD	0.00%	±	0.00%	0.09%	±	0.08%
Apolipoprotein C-IV	APOC4	0.01%	±	0.01%	0.09%	±	0.12%
Serotransferrin	TF	0.29%	±	0.18%	0.08%	±	0.00%
Ceruloplasmin	СР	0.01%	±	0.02%	0.06%	±	0.01%
Serum amyloid A-1	SAA1;SAA2	0.16%	±	0.20%	0.04%	±	0.06%
protein	,						
Properdin	CFP	0.20%	±	0.03%	0.03%	±	0.04%
Vitamin K-dependent	PROS1	0.02%	±	0.02%	0.03%	±	0.01%
protein S							
Alpha-2-HS-glycoprotein	AHSG	0.15%	±	0.06%	0.02%	±	0.00%
Complement C1s	C1S	0.03%	±	0.01%	0.01%	±	0.00%
subcomponent							
Glutathione peroxidase 3	GPX3	0.02%	±	0.02%	0.01%	±	0.02%
Protein AMBP	AMBP	0.00%	±	0.00%	0.01%	±	0.02%
Apolipoprotein B-100	APOB	0.01%	±	0.01%	0.01%	±	0.00%
Alpha-2-macroglobulin	A2M	0.04%	±	0.01%	0.01%	±	0.00%
Inter-alpha-trypsin	ITIH2	0.03%	±	0.01%	0.01%	±	0.01%
inhibitor heavy chain H2							
Apolipoprotein L1	APOL1	0.01%	±	0.02%	0.01%	±	0.01%
Apolipoprotein(a)	LPA	0.00%	±	0.00%	0.01%	±	0.01%
Complement factor H	CFH	0.23%		0.06%	0.01%		0.00%
Complement C1r	C1R	0.05%	±	0.00%	0.00%	±	0.01%
subcomponent		0.0070		0.0070	0.0070		0.0170
Keratin, type I	KRT13	0.00%	\pm	0.00%	0.00%	±	0.00%
cvtoskeletal 13		010070		0.0070	010070		0.0070
Inter-alpha-trypsin	ITIH1	0.01%	\pm	0.02%	0.00%	\pm	0.00%
inhibitor heavy chain H1		0.0170	_	0.02/0	0.0070	_	0.0070
Tetranectin	CLEC3B	0.03%	+	0.04%	0.00%	+	0.00%
Hornerin	HRNR	0.00%	+	0.00%	0.00%	+	0.00%
Complement component	C9	0.00%	- +	0.00%	0.00%	- +	0.00%
C9	~ /	0.0070	-	0.0070	0.0070	-	0.0070
Gelsolin	GSN	031%	+	0.00%	0.00%	+	0.00%
Geno tini		0.01/0		0.00/0	0.0070		0.0070

Ig lambda chain V region 4A	IGLV7-46	0.05%	±	0.07%	0.00%	±	0.00%
Ig lambda chain V-III region LOI	IGLV3-9;IGLV3- 12	0.01%	±	0.01%	0.00%	±	0.00%
Ig lambda-7 chain C region	IGLC7	0.03%	±	0.04%	0.00%	±	0.00%
CD5 antigen-like	CD5L	0.01%	±	0.00%	0.00%	±	0.00%
Plasminogen	PLG	0.06%	±	0.02%	0.00%	±	0.00%
Complement factor B	CFB	0.03%	±	0.02%	0.00%	±	0.00%
Alpha-1-antichymotrypsin	SERPINA3	0.01%	±	0.01%	0.00%	±	0.00%
Complement C5	C5	0.00%	±	0.00%	0.00%	±	0.00%
Kininogen-1	KNG1	0.06%	±	0.05%	0.00%	±	0.00%
Ig kappa chain V-III region B6	IGKV3D-20	0.03%	±	0.01%	0.00%	±	0.00%
Ig lambda chain V-III region SH		0.04%	±	0.06%	0.00%	±	0.00%
Ig gamma-4 chain C region	IGHG4	0.05%	±	0.00%	0.00%	±	0.00%
Complement C1q subcomponent subunit A	C1QA	0.39%	±	0.13%	0.00%	±	0.00%
Complement C1q subcomponent subunit B	C1QB	0.43%	±	0.31%	0.00%	±	0.00%
Beta-2-glycoprotein 1	АРОН	0.47%	±	0.01%	0.00%	±	0.00%
Fibronectin	FN1	0.08%	±	0.03%	0.00%	±	0.00%
Hemopexin	HPX	0.03%	±	0.01%	0.00%	±	0.00%
Plasma kallikrein	KLKB1	0.04%	±	0.04%	0.00%	±	0.00%
Histidine-rich glycoprotein	HRG	0.01%	±	0.02%	0.00%	±	0.00%
Heparin cofactor 2	SERPIND1	0.01%	±	0.00%	0.00%	±	0.00%
Alpha-2-antiplasmin	SERPINF2	0.01%	±	0.00%	0.00%	±	0.00%
Hemoglobin subunit alpha	HBA1;HBZ	0.07%	±	0.04%	0.00%	±	0.00%
Complement factor H-related protein 1	CFHR1	0.04%	±	0.00%	0.00%	±	0.00%
Inter-alpha-trypsin inhibitor heavy chain H4	ITIH4	0.63%	±	0.30%	0.00%	±	0.00%
Testis- and ovary-specific PAZ domain-containing protein 1	TOPAZ1	0.01%	±	0.01%	0.00%	±	0.00%
* 		0.040/		0.010/	0.000/		

Figure S4. The effect of PS NPs, PS-NH₂ NPs and their protein-coated forms on HEK-293 cell viability. Cell viability of HEK-293 cells upon incubation with various concentrations of pristine PS or protein-coated PS for 72 h. Results are expressed as

the percentage of living cells to untreated cells. Data are reported as mean \pm SD, n \geq 6. * p<0.05; ** p<0.01; ****p<0.0001, ordinary one-way ANOVA followed by Dunnett test.

Figure S5. Statistical Analysis of cytotoxicity. Cell viability of SK-BR-3 cells upon incubation with various concentrations of pristine PS or protein-coated PS for 72 h. Results are expressed as the percentage of living cells to untreated cells. Data are reported as mean \pm SD, n \geq 6. * p<0.05; ** p<0.01; ****p<0.0001, ordinary one-way ANOVA followed by Dunnett test.

Fig S6. Gating strategy and histograms of the flow cytometry experiments. The results were obtained from two independent experiments (panel a-d from experiment 1 and e-h from experiment 2). SK-BR-3 cells were analyzed by forward scatter and sideward scatter to identify the cell population if interest and exclude cell debris, gating strategy was represented in panel a and e, and the gating was applied to all samples. PS-NH₂ NPs were labeled with an orange dye (Approximate Exi/Emi of 481/644 nm), and the events of the cell gate were analyzed for their fluorescence (excitation 488 nm, detected in FL1 channel, band-pass filter 530/30 nm). Within each experiment, we have 4 replicates, and the fluorescence distribution of control group (b, f), treated with pristine PS-NH₂ group (c,g), and treated with coronated PS-NH₂ group (d, h).

Fig. S7. Confocal microscopy images of 100 nm PS-NH_2 NPs internalized by NIH3T3 fibroblasts. NIH3T3 fibroblasts were treated under the same condition as

SK-BR-3 cells, red represents CellMaskTM, blue represents nucleus stained with Hoechst 33,342, protein coated PS-NH₂ NPs and pristine PS-NH₂ NPs are indicated in green. Scale bars 10 μ m. The results suggested the similar trend as observed in SK-BR-3 cells: pristine PS-NH₂ NPs tend to stick to the cell membrane, while protein pre-coating enhance their cellular uptake.

Fig S8. Cellular release of internalized PS-NH₂. SK-BR-3 cells were exposed to 12.5 μ g/mL pristine or coronated PS-NH₂ NPs for 4h. After the exposure, the culture medium was removed, the cells were washed gently with PBS three times and replaced with PS-NH₂-free medium, 24 h after the replacement, cellular uptake was measured by PS-NH₂ positive cell percentage using flow cytometry. Data are reported

as mean \pm SD, n \geq 4. * p<0.05; ** p<0.01; ****p<0.0001, ordinary one-way ANOVA followed by Tukey test.

Fig. S9. Original western blots from which Figure 6 (Panel a) derived. Analysis of the expression levels of HER2, pHER2, AKT, pAKT, ERK, pERK and β -actin in SK-BR-3 cells treated or not with 12.5 µg/mL pristine or protein-coated PS-NH₂ for 24 h. Equal amounts of protein (20 µg) were loaded, and β -actin was used as loading control. Since β -actin and ERK have the same Molecular Weight, the membranes were stripped and re-blotted to detect β -actin. Samples were loaded as following order: control in duplicate, cell treated with 12.5 µg/mL PS-NH₂ in triplicate and coronated PS-NH₂ in triplicate.

References

1. Fang, J.; Xuan, Y.; Li, Q., Preparation of polystyrene spheres in different particle sizes and assembly of the PS colloidal crystals. *Science China Technological Sciences* **2010**, *53*, 3088-3093.

 Araújo, R.; Ramalhete, L.; Ribeiro, E.; Calado, C., Plasma versus Serum Analysis by FTIR Spectroscopy to Capture the Human Physiological State. *BioTech* 2022, *11* (4), 56.

3. Crocco, M. C.; Moyano, M. F. H.; Annesi, F.; Bruno, R.; Pirritano, D.; Del Giudice, F.; Petrone, A.; Condino, F.; Guzzi, R., ATR-FTIR spectroscopy of plasma supported by multivariate analysis discriminates multiple sclerosis disease. *Scientific Reports* **2023**, *13* (1), 2565.