
Infrared Color-Sorting Metasurface: 
Supplementary Information
GUANGHAO CHEN1+, JUNXIAO ZHOU1+, LI CHEN2, FANGLIN TIAN1, ZHAOWEI 
LIU1,2*
1Department of Electrical and Computer Engineering, University of California, San Diego, 9500 
Gilman Drive, La Jolla, California 92093, United States
2Department of Materials Science and Engineering, University of California, San Diego, La Jolla, 
California 92093, United States
* zhaowei@ucsd.edu
+These authors contributed equally to this work.

NOTE A: GROUP DELAY OF A GRATING
With the designated angles of the input and output channels, the angular dispersion can be 
calculated with the grating equation, , in which  is the magnitude of the 𝐺𝑚𝜆 = sin 𝜃𝑖 + sin 𝜃𝑡 𝐺

grating reciprocal vector  and  is the incident wavelength.  and  correspond to the incident 𝐺⃗ 𝜆 𝜃𝑖 𝜃𝑡

and diffraction angles, respectively [1]. In this design, the energy is diffracted into the 1st 
diffraction order ( ). When expressed in terms of frequency, the diffraction angle of the 𝑚 = 1
beam is given by:

𝜃𝑡 = asin [2𝜋𝑐0𝐺

𝜔
‒ sin 𝜃𝑖] (A1)

where  is the speed of light in vacuum. In the case of narrow bandwidth, the angular 𝑐0

dispersion is calculated as:

𝑑𝜃𝑡

𝑑𝜔
=

2𝜋𝑐0𝐺

𝜔2 1 ‒ (2𝜋𝑐0𝐺

𝜔
‒ sin 𝜃𝑖)2

=
1
𝜔[sin (𝜃𝑖)

cos (𝜃𝑡)
+ tan (𝜃𝑡)] ≈

1
𝜔0[sin (𝜃𝑖)

cos (𝜃𝑡)
+ tan (𝜃𝑡)](A2)

The angular dispersion is linear to the frequency. The phase delay in reference to the central 
frequency  is:𝜔0

𝜙(𝑥;𝜔) =‒
𝜔𝑥
𝑐0

sin [𝜃𝑡 +
𝑑𝜃𝑡

𝑑𝜔
(𝜔 ‒ 𝜔0)] (A3)

The GD  of the grating is given by:𝜙'

𝜙'(𝑥;𝜔) =
∂𝜙(𝑥;𝜔)

∂𝜔
│𝜔 = 𝜔0

=‒
𝑥
𝑐0

sin [𝜃𝑡 +
𝑑𝜃𝑡

𝑑𝜔
(𝜔 ‒ 𝜔0)] (A4)

At narrowband condition, the GD  can be approximated as , which is a 𝜙'(𝑥;𝜔) ‒ 𝑥 𝑐0sin (𝜃𝑡)
linear function of x. 

NOTE B: GROUP DELAY OF A PAIR OF HUYGENS’ RESONATORS
In a dielectric particle, the electrical dipole (ED, e) and magnetic dipole (MD, m) resonances 
are the dominant modes, when the size of the particle is small compared to the incident 
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wavelengths. When approximated by Lorentzian line shapes [2], the forward scattering 
efficiency can be expressed as

𝑡(𝜔) = 1 +
2𝑖𝛾𝑒𝜔

𝜔2
𝑒 ‒ 𝜔2 ‒ 2𝑖𝛾𝑒𝜔

+
2𝑖𝛾𝑚𝜔

𝜔 2
𝑚 ‒ 𝜔2 ‒ 2𝑖𝛾𝑚𝜔

(B1)

Here,  is the damping factor and  denotes the resonance frequency. A Huygens’ 𝛾𝑒,𝑚 𝜔𝑒,𝑚

resonator is made when the first Kerker’s condition [3], i.e.,  and , 𝜔𝑒 ≈ 𝜔𝑚 ≈ 𝜔0 𝛾𝑒 ≈ 𝛾𝑚 ≈ 𝛾
is met in a particle, such that both the transmission and the dispersion are maximized 
simultaneously at the resonant frequency. The phase is given by:

𝜙 = arctan [ ‒
4𝛾𝜔(𝜔2

0 ‒ 𝜔2)
(𝜔2

0 ‒ 𝜔2)2 ‒ 4𝛾2𝜔2] (B2)

To observe the dispersion near the resonance more clearly, we express the parameters in Eq. 
(B2) in terms , i.e.,  and . Hence, the GD and the GDD are, 𝜔0 𝛾 = 𝛾'𝜔0 𝜔 = 𝜔0 + 𝑥𝜔0

respectively, 

𝜙'(𝑥,𝛾') =‒
4𝛾'(2 + 𝑥(2 + 𝑥))

4𝛾'2(1 + 𝑥)2 + 𝑥2(2 + 𝑥)2 (B3)

𝜙''(𝑥,𝛾') =
8𝛾'(1 + 𝑥)(4𝛾'2 + 𝑥(2 + 𝑥)(4 + 𝑥(2 + 𝑥)))

(4𝛾'2(1 + 𝑥)2 + 𝑥2(2 + 𝑥)2)2 (B4)

where  and . In the wavelength range used in this ∂𝜙 ∂𝑥 = 𝜔0∂𝜙/∂𝑥 ∂2𝜙 ∂𝑥2 = 𝜔2
0∂2𝜙/∂𝑥2

work,  and  is estimated at 0.1 by fitting the simulated transmittance. Both 𝛿𝜔 ≈ 0.55𝜔0 𝛾'

functions are plotted in Fig. 2 (a) and (b). A small GDD can only be found at large damping 
where dispersion is small. In the existence of another Huygens’ resonance, the accumulated 
GD is given by:

𝜙'(𝜔;𝛾1,𝛾2,𝜔1,𝜔2) = 𝜙'(𝜔;𝛾1,𝜔1) + 𝜙'(𝜔;𝛾2,𝜔2)

=‒
4𝛾1(𝜔2

1 ‒ 𝜔2)
𝜔4

1 + 4𝛾2
1𝜔2 ‒ 2𝜔2

1𝜔2 + 𝜔4
‒

4𝛾2(𝜔2
2 ‒ 𝜔2)

𝜔4
2 + 4𝛾2

2𝜔2 ‒ 2𝜔2
2𝜔2 + 𝜔4

(B5)

Again, we can express the parameters in terms of , i.e., , , 𝜔0 𝛾1 = 𝑔1𝜔0 𝛾2 = 𝑔2𝜔0

, , and , where  tunes the frequency offsets 𝜔1 = 𝜔0 ‒ 𝛿𝜔0/2 𝜔2 = 𝜔0 + 𝛿𝜔0/2 𝜔 = 𝜔0 + 𝑥𝜔0 𝛿
of both resonances. Eq. (B5) can be rewritten as:

𝜙'(𝑥;𝛿,𝑞1,𝑞2) = 𝜙'(𝜔;𝛾1,𝜔1) + 𝜙'(𝜔;𝛾2,𝜔2)

= ‒
16𝛾1(8 + ( ‒ 4 + 𝛿)𝛿 + 4𝑥(2 + 𝑥))

‒ 8𝛿3 + 𝛿4 + 32𝛿𝑥(2 + 𝑥) ‒ 8𝛿2( ‒ 2 + 𝑥(2 + 𝑥)) + 16(4𝛾2
1(1 + 𝑥)2 + 𝑥2(2 + 𝑥)2)

‒
16𝛾2(8 + 𝛿(4 + 𝛿) + 4𝑥(2 + 𝑥))

8𝛿3 + 𝛿4 ‒ 32𝛿𝑥(2 + 𝑥) ‒ 8𝛿2( ‒ 2 + 𝑥(2 + 𝑥)) + 16(4𝛾2
2(1 + 𝑥)2 + 𝑥2(2 + 𝑥)2)

(B6
)

Similarly, the scaled GDD is the derivative of  with respect to . The GDs and 𝜙'(𝑥;𝛿,𝑞1,𝑞2) 𝑥
GDDs are plotted in Fig. 2 (c) and (d).



NOTE C: METASURFACE SIMULATION
In the design, four layers of Huygens’ resonators are stacked inside a metasurface, with each 
layer is associated with a resonance wavelength at one of the four band edges. The metasurface 
unit cells in the design are made of silicon (n = 3.41) nanodisks embedded in a CaF2 (n = 1.23) 
substrate, as shown in Fig. 5 (a). Periodic boundary conditions are applied at the four sides of 
the unit cell and perfectly matched layers are applied on the top and the bottom of the cell.

After roughly determining the size of the particles, the diameter (D), height (H) and unit 
cell width (P) in each layer are further optimized in the wave optics module of COMSOL to 
shift the resonances to the desired wavelengths. Afterwards, H and P are set to constant for each 
layer, leaving D as the only parameter to detune the resonances.

Fig. S1. Transmittance of the four selected groups of resonances: (a) 10.4 m, (b) 11.2 m, (c) 
11.43 m, and (d) 12.3 m. The blue vertical axis on the left indicates the frequency and the red 
vertical axis is the corresponding wavelength in μm. The white dashed boxes mark the high 
transmittance regions ( ) that are used in our design.𝑇 > 70%

NOTE D: WAVELENGTH-SPLITTING DEVICE OPTIMIZATION
The purpose of device optimization is to find out the best meta-atom size combinations that 
yield good device performance. Oblique incident plane waves passe through the grating and 
the metasurface with mostly phase modulated. The far-field radiation pattern is then simulated 
via scalar diffraction with the Fraunhofer approximation. Ideally, a full-wave simulation should 
be implemented in the optimization loop for best accuracy, but the excessive computation will 
be prohibiting. There are over 100 meta-atoms in the metasurface and each meta-atom is 
associated with two parameters, as shown in Fig. 4. Therefore, in this demonstration, we only 
use full-wave simulation to compute the complex transmission coefficients of the meta-atoms 
at several resonance conditions, i.e., combinations of H and P. The optimization then selects 
from this library of pre-computed meta-atoms.

Fig. S2. Cross section of the optimized metasurface with 4 layers of meta-atoms. The diameters 
of the meta-atoms are varied along the  direction. From the top layer #1 to the bottom layer #4, 𝑥
the resonance wavelengths of meta-atoms at each layer are tuned around 12.3 m, 11.43 m, 
11.2 m, and 10.4 m, respectively. The total length of the simulated region, LMS, is 210 μm.

In the simulation, the metasurface is considered a stack of four thin phase elements with a gap 
of 4 μm between adjacent layers, shown in Fig. S2. Each phase element consists of an array of 
detuned meta-atoms varied in the diameters. The complex transmission coefficient of each 
meta-atom is interpolated from the maps shown in Fig. 6. In the setting of the simulation 
domain, each layer of the metasurface has roughly 25 meta-atoms and more than 100 units in 



total. The optimization is carried out on a home-built Python program with TensorFlow [4]. It 
combines the built-in automatic differentiation tool and a stochastic gradient descent (SGD) 
optimizer to drive the metasurface design. After each iteration, the broadband far-field radiation 
pattern is evaluated by a merit function that promotes angular separation of the two bands and 
minimizes angular dispersion in each band. The centroid of each band, as shown in Fig.5 (c) 
and (f), is computed as the intensity-weighted average of the angles and the broadband angular 
dispersion is measured by computing the standard deviation of angles at all computed 
wavelengths. Based on the result, the SGD algorithm ends each iteration by adjusting the design 
parameters in the direction of maximal cost reduction.
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