Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2024

Fig. S1 SEM images of (a-b) siloxene, (c-d) PdCu/Siloxene.

Fig. S2 (a) TEM image, (b) the diameter distribution of PdCu/Siloxene-300. (c) TEM image, (d) the diameter distribution of PdCu/SiO₂.

Fig. S3 (a) HAADF-STEM, (b) EDS mapping of PdCu/Siloxene-300. (c) HAADF-STEM, (d) EDS mapping of PdCu/SiO₂.

Fig. S4 BET surface area of (a) PdCu/Siloxene, (b) PdCu/Siloxene-300, and (c) PdCu/SiO₂.

Fig. S5 H₂-TPR profiles of three catalysts.

Fig. S6 Acetylene conversion and ethylene selectivity over (a) Pd/Siloxene and (b) Cu/Siloxene.

Fig. S7 Stability evaluation during a 20 hours test at 200 °C over PdCu/Siloxene-300 and PdCu/SiO₂: (a) acetylene conversion, (b) ethylene selectivity.

Fig. S8 Stability evaluation over PdCu/Siloxene under industrial conditions. (Reaction conditions: 1.0 % C_2H_2 , 10.0 % H_2 and 20 % C_2H_4 , with N_2 balance, total stream flow of 50 mL·min⁻¹; Reaction temperature=120 °C.)

Fig. S9 (a) TEM image, (b) the diameter distributions of PdCu/SiO₂-tested.

 Table S1. Metal loadings of the three different catalysts.

Sample	Metal loading			
	Cu (wt%)	Pd (wt%)		
PdCu/Siloxene	3.2	0.1		
PdCu/Siloxene-300	2.6	0.1		
PdCu/SiO ₂	2.5	0.1		

Catalysts	Gas composition (vol. Met	(wt. %)	Conversion	Selectivity	Temperature	Reaction	Ref.
	,	· · ·	(%)	(%)	(°C)	time (h)	
PdCu/Siloxene	C ₂ H ₂ 1.0 % / H ₂ 10 % / N ₂ balance 50mL⋅min ⁻¹	Pd 0.1 Cu 3.2	~ 93	~ 91	200	39	This work
Pd/Bi ₂ O ₃ /TiO ₂	$C_2H_2 1 \% / H_2 20 \%$ / $C_2H_4 20 \% / N_2$ balance $60mL \cdot min^{-1}$	Pd 2.3 Bi 4.9	~ 64	~ 93	40	24	[1]
CuB2 CuPd-2	$C_2H_2 0.5 \% / H_2 5\%$ / $C_2H_4 10 \% / Ar balance$ 50mL·min ⁻¹	N.A.	~ 92.5	~ 87.7	80	24	[2]
Pd ₁ Cu ₁ /ND@G	$C_2H_2 1 \% / H_2 10 \%$ / $C_2H_4 20 \% / He balance 30mL·min-1$	Pd 0.09 Cu 0.49	~ 68	~ 92	90	100	[3]
Pd/MgAl ₂ O ₄	C ₂ H ₂ 1 % / H ₂ 5 % /C ₂ H ₄ 20 % /Ar balance 40 mL·min ⁻¹	Pd 0.1	~ 90	~ 83	120	50	[4]
Ni ₃ ZnC _{0.7} /C	C ₂ H ₂ 1 % / H ₂ 15 % /N ₂ balance 100mL·min ⁻¹	Ni ₃ Zn 2	~ 95	~ 85	160	10	[5]
CuPd _{0.006} /SiO ₂	C ₂ H ₂ 1.0 % / H ₂ 20.0 % /C ₂ H ₄ 20.0 % /He balance 30mL·min ⁻¹	Cu 4.96 Pd 0.0494	~ 99	~ 45	160	24	[6]
Pd-His/SiO ₂	C ₂ H ₂ 1 % / H ₂ 10 % /Ar balance 30mL·min ⁻¹	Pd 0.48	~ 100	~ 76 to ~ 81	160	50	[7]
Pt ₃ Fe/SiO ₂	C ₂ H ₂ 1 % / H ₂ 2 % / He balance 50mL·min ⁻¹	Pt 18.9 Fe 1.7	~ 99	~ 83	180	40	[8]
NiCu/ZrO ₂	C ₂ H ₂ 1 % / H ₂ 10 % /C ₂ H ₄ 20 % /Ar balance 40mL·min ⁻¹	Ni 4.6 Cu 4.8	~ 100	~ 94 to ~ 91	220	15	[9]

Table S2. Long-term catalytic performance of different catalysts based semi-hydrogenation of acetylene.

References:

- S. Zou, B. Lou, K. Yang, W. Yuan, C. Zhu, Y. Zhu, Y. Du, L. Lu, J. Liu, W. Huang, B. Yang, Z. Gong, Y. Cui, Y. Wang, L. Ma, J. Ma, Z. Jiang, L. Xiao and J. Fan, *Nat. Commun.*, 2021, **12**, 5770.
- Q. Gao, Z. Yan, W. Zhang, H. S. Pillai, B. Yao, W. Zang, Y. Liu, X. Han, B. Min, H. Zhou, L. Ma, B. Anaclet, S. Zhang, H. Xin, Q. He and H. Zhu, *J. Am. Chem. Soc.*, 2023, 145, 19961-19968.
- F. Huang, M. Peng, Y. Chen, X. Cai, X. Qin, N. Wang, D. Xiao, L. Jin, G. Wang, X.-D. Wen, H. Liu and D. Ma, J. Am. Chem. Soc., 2022, 144, 18485-18493.
- Z. Li, G. Lin, Y. Chen, Q. Xue, K. Feng and B. Yan, *Catal. Today*, 2023, 423, 114253.
- 5. Y. Wang, B. Liu, X. Lan and T. Wang, ACS Catal., 2021, 11, 10257-10266.
- G. X. Pei, X. Y. Liu, X. Yang, L. Zhang, A. Wang, L. Li, H. Wang, X. Wang and T. Zhang, ACS Catal., 2017, 7, 1491-1500.
- 7. Q. Wu, C. Shen and C.-j. Liu, Appl. Surf. Sci., 2023, 607, 154976.
- D. Zhou, G. Zhang, Y. Li, S. Liu, S. Han, Y. Zhou and W. Shen, *Chem. Eng. J.*, 2023, 472, 144875.
- J. Gu, M. Jian, L. Huang, Z. Sun, A. Li, Y. Pan, J. Yang, W. Wen, W. Zhou, Y. Lin, H.-J. Wang, X. Liu, L. Wang, X. Shi, X. Huang, L. Cao, S. Chen, X. Zheng, H. Pan, J. Zhu, S. Wei, W.-X. Li and J. Lu, *Nat. Nanotechnol.*, 2021, 16, 1141-1149.