Supporting Information

Mechanistic study on the competition between carbon dioxide reduction and hydrogen evolution reaction and selectivity tuning via single-atom catalyst loading on graphitic carbon nitride

Joel Jie Foo^{a,b}, Sue-Faye Ng^{a,b}, Mo Xiong^{c,*} and Wee-Jun Ong^{a,b,d,e,f,*}

^{*a*} School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor Darul Ehsan, 43900, Malaysia.

^b Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Sepang, Selangor Darul Ehsan, 43900, Malaysia.

^c MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049 Shanxi, China.

^d State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

^e Gulei Innovation Institute, Xiamen University, Zhangzhou 363200, China.

^f Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China.

*Corresponding authors:

Wee-Jun Ong, Xiamen University Malaysia, Sepang, Selangor Darul Ehsan, Malaysia. Email: weejun.ong@xmu.edu.my

Mo Xiong, Xi'an Jiaotong University, Xi'an, Shanxi, China. Email: <u>xiongmo@xjtu.edu.cn</u>

List of Abbreviations

AIMD	Ab initio molecular dynamics		
CBM	Conduction band minimum		
CN	g-C ₃ N ₄		
CO ₂ RR	Carbon dioxide reduction reaction		
DFT	Density functional theory		
DFT-D3	Empirical correlation in Gimme's scheme		
GGA-PBE	Generalized gradient approximation with Perdew-Burke-Ernzerhof		
	exchange-correlation function		
HER	Hydrogen evolution reaction		
M-SAC	Metal single-atom catalyst		
PAW	Projected augmented wave		
PDS	Potential determining steps		
SAC	Single-atom catalyst		
VASP	Vienna Ab initio Simulation Package		
VBM	Valence band maximum		

Fig. S1 AIMD evaluation of the AuCN system; Grey: temperature and Blue: energy evolution versus time, respectively. The AIMD simulation lasted 4000 fs at 300 K.

Fig. S2 The geometry-optimized model of the CO_2 adsorbed on the surface of the (a) CN and (b) NiCN system. The dashed line refers to the distance between the O and C molecules; the solid line refers to the angle of O-C-O.

Fig. S3 Gibbs free energy of the CO_2RR to (a) CO via Pathway 1 and HCOOH via (b) Pathway 2 and (c) Pathway 3 with different M-SACs loaded carbon nitride catalyst systems. (d) The comparison between Gibbs free energy of the pristine (Pathway 2) and the best performance MCN (M = Ni and Pb) (Pathway 3) to the formation of HCOOH.

Systems	M-N Distance (Å)		
BiCN	2.49 - 2.53		
InCN	-		
SnCN	2.47 – 2.57		
AgCN	-		
AuCN	2.26 - 2.27		
CdCN	2.41 - 2.52		
CuCN	2.08 - 2.09		
GaCN	-		
NiCN	1.89 – 1.90		
PbCN	2.56 - 2.76		
ZnCN	2.22 - 2.23		
PbCN	2.20 - 2.23		
PtCN	2.09 - 2.31		

Table S1 The distance between the M-SAC and the unsaturated N atoms.

System	Relative Gibbs Free Energy (eV)			PDS (eV)
	$*CO_2 \rightarrow *COOH$	$*COOH \rightarrow CO$	$*CO \rightarrow CO$	_
CN	1.3635	-1.0655	-0.056	1.3635
BiCN	0.3175	-0.1325	0.057	0.3175
InCN	1.2385	-0.9705	-0.026	1.2385
SnCN	0.7745	-0.5585	0.026	0.7745
AgCN	0.7255	-0.8725	0.389	0.7255
AuCN	-0.8165	-0.5035	1.562	1.562
CdCN	0.3155	-0.1045	0.031	0.3155
CuCN	0.2305	-1.2695	1.281	1.281
GaCN	0.8675	-0.7195	0.094	0.8675
NiCN	0.4535	-1.5255	1.314	1.314
PbCN	0.5105	-0.3765	0.108	0.5105
ZnCN	-0.3415	0.1335	0.45	0.45
PdCN	0.6355	-1.8915	1.498	1.498
PtCN	-0.4525	-1.9535	2.648	2.648

Table S2. Relative Gibbs free energy of the CN and MCN system for CO_2 conversion to CO via pathway 1 through the *COOH intermediate. (Red font indicates the potential determining step for each of the system)

*PDS = Potential-determining step (the highest potential required for the transition state in the entire reaction path)

System	Relative Gibbs Free Energy (eV)			PDS (eV)
	$^{*}\mathrm{CO}_{2} \rightarrow ^{*}\mathrm{COOH}$	$*COOH \rightarrow CO$	$*CO \rightarrow CO$	_
CN	1.3635	-1.2385	0.147	1.3635
BiCN	0.3175	0.1165	-0.162	0.3175
InCN	1.2385	-0.7475	-0.219	1.2385
SnCN	0.7745	-0.6325	0.13	0.7745
AgCN	0.7255	-0.5565	0.103	0.7255
AuCN	-0.8165	1.1115	-0.023	1.1115
CdCN	0.3155	-0.4005	0.357	0.357
CuCN	0.2305	-0.4805	0.522	0.522
GaCN	0.8675	-0.9125	0.317	0.8675
NiCN	0.4535	0.1235	-0.305	0.4535
PbCN	0.5105	-0.6345	0.396	0.5105
ZnCN	-0.3415	-0.3625	0.976	0.976
PdCN	0.6355	-0.3075	-0.056	0.6355
PtCN	-0.4525	0.7535	-0.029	0.7535

Table S3. Relative Gibbs free energy of the CN and MCN system for CO_2 conversion to HCOOH via pathway 2 through the *COOH intermediate. (Red font indicates the potential-determining step for each of the system)

*PDS = Potential-determining step (the highest potential required for the transition state in the entire reaction path)

System	Relative Gibbs Free Energy (eV)			PDS (eV)
	$*CO_2 \rightarrow$	*OCHO →	*HCOOH →	-
	*OCHO	нсоон	НСООН	
CN	2.4385	-2.3135	0.147	2.4385
BiCN	-0.4025	0.8365	-0.162	0.8365
InCN	0.5015	-0.0105	-0.219	0.5015
SnCN	-0.8195	0.9615	0.13	0.9615
AgCN	0.6285	-0.4595	0.103	0.6285
AuCN	-0.9345	1.2295	-0.023	1.2295
CdCN	-0.6455	0.5605	0.357	0.5605
CuCN	-0.1255	-0.1245	0.522	0.522
GaCN	0.3725	-0.4175	0.317	0.3725
NiCN	0.2155	0.3615	-0.305	0.3615
PbCN	-0.5605	0.4365	0.396	0.4365
ZnCN	-1.3135	0.6095	0.976	0.976
PdCN	0.5275	-0.1995	-0.056	0.5275
PtCN	-0.9525	1.2535	-0.029	1.2535

Table S4. Relative Gibbs free energy of the CN and MCN system for CO_2 conversion to HCOOH via pathway 3 through the *OCHO intermediate. (Red font indicates the potential-determining step for each of the system)

*PDS = Potential-determining step (the highest potential required for the transition state in the entire reaction path)