Supporting Information for

Electrocatalytic Nitrogen Reduction to Ammonia by Atomically Precise Cu₆ Nanoclusters Supported on Graphene Oxide

Aamir Shehzad,^{ab} Chaonan Cui,*^a Ran Cheng,^{ab} Zhixun Luo*^{ab}

^a State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

^b School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China

* Corresponding authors. Emails: chncui@iccas.ac.cn (CC); zxluo@iccas.ac.cn (ZL).

S1. Materials and Materials

Chemicals. All chemicals are commercially available and used without further purification, including cupric (II) acetate [Cu(OAC)₂, 99%, Alfar Aesar], triphenylphosphine gold (I) chloride (AuClPPh₃, 98%, Acros Organic), 2-mercapto-5-n-propylpyrimidine (SN₂C₇H₁₀, SMPP, 98%, Alfar Aesar), sodium borohydride (NaBH₄, 98%, Acros Organics) and triethylamine (98%, Acros Organics). Various solvents comprising dichloromethane (DCM), methanol, n-hexane and ethanol were purchased from Beijing chemical reagent Co. Ltd.

Other chemicals including graphene oxide, KOH, NaOH, HCl, salicylic acid, sodium citrate, sodium hypochlorite (NaClO), sodium nitroferricyanide dihydrate (C₅FeN₆Na₂O.2H₂O), NH₄Cl, *p*-dimethylaminobenzaldehyde (C₉H₁₁NO), hydrazine monohydrate (N₂H₄.H₂O), Nafian D521 (5 wt%) were commercially purchased without further purification. The water used for the experiment was Milli-Q water, produced by a Millipore apparatus. The carbon paper electrode was used for preparation of working electrode.

Characterization. The UV-vis absorption spectra were collected using an UV-3600 Shimadzu UV-vis-NIR spectrophotometer. The single-crystal X-ray diffraction (XRD) data of the synthesized Cu₆ nanoclusters was measured on an Rigaku MM007HF Saturm724+ single crystal X-ray diffractometer with Mo Kα radiation (λ =0.71073 Å). The single crystal structure was solved by direct methods and refined with full-matrixleast-squares on *F*². High resolution of electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) measurements was conducted by a Bruker Solarix 9.4T in the positive ionization mode. To clarify the surface atoms, present in the single crystal structure according to the crystal structure data and core-level binding energies (BEs) compared to their surface oxidation states, X-ray photoelectron spectroscopy (XPS) was collected by a Thermo Fisher Scientific EscaLab250Xi spectrometer. The highresolution morphological features of GO-supported Cu₆(SMPP)₆ NCs were examined on high resolution transmission electron microscope (HRTEM) JSM200FS. Quantification of hydrazine byproduct. Additionally, considering hydrazine to be a likely byproduct during dinitrogen reduction to ammonia, the quantification of hydrazine was also tested using the Watt and Chrisp method.¹ Hydrazine reacts with p-dimethylaminobenzaldehyde (PDABA, $C_9H_{11}NO$) in acidic media to generate yellow products with a UV-vis absorption band at 455 nm, which is used for hydrazine determination spectrophotometrically. A mixed solution of 30 mL volume of HCl (1 M), 300 mL anhydrous ethanol and 5.99 g PDABA was used as a colour reagent in this study. The standard reference solutions based on N₂H₄·H₂O (85 %) were prepared with the concentrations of 0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 μ g·mL⁻¹ to plot the calibration curve. Later, 5 mL volume of colour reagent and 5 mL volume of the reference solution were added to the ENRR sample solutions. After 15 minutes, absorbance at 457 nm was recorded. From the UV-vis absorption for N₂H₄ standard solutions, the obtained calibration curve y=1.290x-0.00379 (R²=0.999) shows a good linear relation of absorbance values with hydrazine concentrations. The yield of hydrazine after each ENRR test was evaluated by mixing 5 mL colour reagent with 5 mL residual electrolyte, and UV-vis absorption spectra were also recorded after incubation for 15 minutes.

Fig. S1 ENRR working Apparatus (a) H-cell (b) Electrochemical workstation CHI660E.

S2. Experimental Details

Fig. S2 (a) UV-vis absorption spectra of indophenol assays with NH_4^+ ions after incubation for 2 hours at room temperature in dark conditions. (b) Calibration curve used for determination of NH_3 concentration.

Fig. S3 (a) UV-vis absorption spectra for N_2H_4 standard solutions with different concentrations. (b) Calibration curve used for estimation of N_2H_4 concentration.

Fig. S4 ESI-MS experimental spectrum of synthesized $Cu_6(SMPP)_6$ nanoclusters in the positive mode.

Fig. S5 Full survey XPS spectrum of the Cu₆(SMPP)₆ nanoclusters.

Fig. S6 LSV curve for unsupported ${\rm Cu}_6$ nanoclusters in N_2 and Ar-saturated 0.1 M KOH electrolyte solution.

Fig. S7 UV-visible absorption spectra using graphene-oxide-supported Cu₆ NCs for NRR at corresponding potentials after 2 hours incubation using indophenol assay.

Fig. S8 UV-visible absorption spectra after NRR using graphene oxide supported Cu_6 NCs in N_2 and Ar-saturated environment at -1.1 V to confirm source of ammonia.

Fig. S9 NH_3 yields at -1.1 V versus RHE during recycling test for five times.

S3. Theoretical Calculation Details

Fig. S10 Optimized structures of Cu₆ clusters supported on graphene oxide substrates.

Fig. S11 The charge density difference of the Cu_6S_6 supported on GO.

Fig. S12 Reaction pathway for N_2 adsorption and hydrogenation on a Cu_6S_6 cluster.

Table S1 Crystallographic data	for the Cu ₆ (SMPP) ₆ nanocluster
--------------------------------	---

In this work		In Ref. ²		
Empirical formula	$C_{42}H_{54}Cu_6N_{12}S_6$	$C_{44}H_{58.02}Cl_{4.03}Cu_6N_{12}S_6$		
Formula weight	1300.57	1471.33		
Temperature (K)	170.0(4)	293(2)		
Crystal system	monoclinic	triclinic		
Space group	P 2 ₁ /n	P-1		
a (Å)	11.88670(14)	9.2167(4)		
b (Å)	13.06844(17)	13.7793(6)		
c (Å)	16.4807(2) 23.2892(7)			
α (deg)	90	78.740(3)		
β (deg)	99.397	88.981(3)		
γ (deg)	90	86.659(3)		
Volume (ų)	2525.76	2895.81(19)		
Z	2	2		
ρ _{calc} (g/cm ³)	1.710	1.687		
μ (mm ⁻¹)	5.425	2.609		
F(000)	1320	1489.0		
Crystal size (mm ³)	0.21 × 0.15 × 0.12	0.22 x 0.16 x 0.15		
20 range for data collection (deg)	8.546 to 154.97	6.852 to 61.668		
Index ranges	$-13 \le h \le 14, -12 \le k \le 16, -20 \le l \le 20$	$-11 \le h \le 13, -19 \le k \le 19, -33 \le l \le 33$		
Reflections collected	16989	50454		
Independent reflections	5169 [R _{int} = 0.0451, R _{sigma} = 0.0432]	16012 [R _{int} = 0.0459, R _{sigma} = 0.0576]		
Data / restraints / parameters	5169/0/302	16012/327/733		
Goodness-of-fit on F ²	1.053	1.150		
Final R indexes [I>=2σ (I)]	$R_1 = 0.0322$, $wR_2 = 0.0852$ $R_1 = 0.1189$, $wR_2 = 0.3059$			
Final R indexes [all data]	R ₁ = 0.0364, wR ₂ = 0.0885	R ₁ = 0.1457, wR ₂ = 0.3213		
Largest diff. peak/hole (e Å ⁻³)	0.46/-0.42	3.78/-1.46		

Sr. No	Bond	Bond length (Å)			
1	Cu ₁ -Cu ₂	2.689			
2	Cu ₂ -Cu ₃	2.909			
3	Cu ₃ -Cu ₄	2.877			
4	Cu ₄ -Cu ₅	2.689			
5	Cu ₅ -Cu ₆	2.909			
6	Cu ₆ -Cu ₁	2.877			
7	Cu ₁ -S ₁	2.230			
8	Cu ₃ -S ₁	2.247			
9	Cu ₂ -S ₂	2.270			
10	Cu ₄ -S ₂	2.278			
11	Cu ₄ -S ₃	2.230			
12	Cu ₅ -S ₃	2.247			
13	Cu ₃ -S ₄	2.263			
14	Cu ₆ -S ₄	2.244			
15	Cu ₅ -S ₅	2.270			
16	Cu ₁ -S ₅	2.278			
17	Cu ₂ -S ₆	2.244			
18	Cu ₅ -S ₆	2.263			
19	Cu ₁ -N ₁	2.041			
20	Cu ₂ -N ₂	2.044			
21	Cu ₃ -N ₃	2.049			
22	Cu ₄ -N ₄	2.041			
23	Cu ₅ -N ₅	2.049			
24	Cu ₆ -N ₆	2.044			

Table S2Calculated bond lengths in synthesized Cu_6 nanoclusters

Catalyst	Electrolyte	NH₃ yield	FE(%)	Ref.
Cu ₆ /GO NCs	0.1 M KOH	4.8 µg⋅h ⁻¹ cm ⁻²	30.39	This work
Cu NPs on Ti ₃ C ₂	0.1 M KOH	3.04 µmol·h ⁻¹ cm ⁻²	7.31	3
TiO ₂ -rGO	0.1 M Na ₂ SO ₄	15.13 µg⋅h⁻¹mg⁻¹ _{cat.}	3.3	4
Au nanorods	0.1 M KOH	1.6 μg⋅h ⁻¹ cm ⁻²	3.88	5
β-FeOOH nanorod	0.5 M LiCIO ₄	23.32 µg⋅h ⁻¹ mg ⁻¹ cat.	6.7	6
γ-Fe ₂ O ₃	0.1 M KOH	0.212 µg⋅h-mg ^{_1} _{cat.}	1.9	7
Pd _{0.2} Cu _{0.8} /rGO	0.1 M KOH	2.8 µg⋅h⁻¹mg⁻¹ _{cat.}	4.5	8
MoS ₂ /CC	0.1 M Na ₂ SO ₄	4.94 µg·h ⁻¹ cm ⁻²	1.17	9
Fe ₃ O ₄ /Ti	0.1 M Na ₂ SO ₄	3.42 µg·h⁻¹cm⁻₂	2.6	10
TiO ₂ nanosheets	0.1 M Na ₂ SO ₄	5.6 µg⋅h⁻¹cm⁻²	2.5	11
B-TiO ₂	0.1 M Na ₂ SO ₄	14.4 µg⋅h ^{_1} mg ^{_1} _{cat.}	3.4	12
$MnB_x(NO_3 \text{ to } NH_3)$	0.1 M Li ₂ SO ₄	74.9 ± 2.1 µg⋅h⁻¹mg⁻¹ _{cat.}	38.5 ± 2.7	13
CoO/CuO-NA/CF		206.0 upped b=1 em=2	92.9	14
$(NO_3^- \text{ to } NH_3)$		290.9 µmorn + cm -		
Au NCs on TiO ₂	0.2 M Na ₂ SO ₄ &	1002	91	15
(NO ₃ ⁻ to NH ₃)	0.05 M NaNO ₃	1923 µg·n='·mg=' _{cat.}		
Pd/TiO ₂ ,	0.4 M/K 0.0		05.0	16
(NO ₃ ⁻ to NH ₃).	0.1 M K2SO4	8.3 nmol·s ⁻¹ cm ⁻²	25.0	10
Ru-O-V pyramid			E1 10	17
electron bridge	0.1 IVI INA 2504	$115 \mu g \cdot n^{-1} \cdot m g^{-1} cat.$	51.40	17
Bi-doped FeS ₂	0.1 M KOH	$21.0 \text{ ug } \text{h}^{-1} \text{ am}^{-2}$	09.5	18
(NO ₃ ⁻ to NH ₃)	(H-cell)	21.9 µg·m '·cm -	90.0	10

Table S3 Comparison of NRR performance of Cu₆/GO with other electrocatalysts

References

- 1. G. W. Watt and J. D. Chrisp, *Anal. Chem.*, 1952, **24**, 2006–2008.
- 2. H. Wu, R. Anumula, G. N. N. Andrew and Z. Luo, *Nanoscale*, 2023, **15**, 4137–4142.
- A. Liu, X. Liang, Q. Yang, X. Ren, M. Gao, Y. Yang and T. Ma, *ChemPlusChem*, 2021, 86, 166–170.
- 4. X. Zhang, Q. Liu, X. Shi, A. M. Asiri, Y. Luo, X. Sun and T. Li, *J. Mater. Chem. A*, 2018, **6**, 17303–17306.
- 5. D. Bao, Q. Zhang, F.-L. Meng, H.-X. Zhong, M.-M. Shi, Y. Zhang, J.-M. Yan, Q. Jiang and X.-B. Zhang, *Adv. Mater. (Weinheim, Ger.)*, 2017, **29**, 1604799.
- 6. X. Zhu, Z. Liu, Q. Liu, Y. Luo, X. Shi, A. M. Asiri, Y. Wu and X. Sun, *Chem. Commun.*, 2018, **54**, 11332–11335.
- J. Kong, A. Lim, C. Yoon, J. H. Jang, H. C. Ham, J. Han, S. Nam, D. Kim, Y.-E. Sung,
 J. Choi and H. S. Park, *ACS Sustain. Chem. Eng.*, 2017, 5, 10986–10995.
- 8. M.-M. Shi, D. Bao, S.-J. Li, B.-R. Wulan, J.-M. Yan and Q. Jiang, *Adv. Energy Mater.*, 2018, **8**, 1800124.
- 9. L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri, L. Chen, B. Tang and X. Sun, *Adv Mater*, 2018, **30**, e1800191.
- 10. Q. Liu, X. Zhang, B. Zhang, Y. Luo, G. Cui, F. Xie and X. Sun, *Nanoscale*, 2018, **10**, 14386–14389.
- 11. R. Zhang, X. Ren, X. Shi, F. Xie, B. Zheng, X. Guo and X. Sun, ACS Appl. Mater.

Interfaces, 2018, 10, 28251-28255.

- 12. Y. Wang, K. Jia, Q. Pan, Y. Xu, Q. Liu, G. Cui, X. Guo and X. Sun, *ACS Sustain. Chem. Eng.*, 2019, **7**, 117–122.
- M. A. Mushtaq, A. Kumar, W. Liu, Q. Ji, Y. Deng, G. Yasin, A. Saad, W. Raza, J. Zhao,
 S. Ajmal, Y. Wu, M. Ahmad, N. U. R. Lashari, Y. Wang, T. Li, S. Sun, D. Zheng, Y. Luo, X. Cai and X. Sun, *Adv Mater*, 2024, **36**, e2313086.
- 14. S. Chen, G. Qi, R. Yin, Q. Liu, L. Feng, X. Feng, G. Hu, J. Luo, X. Liu and W. Liu, *Nanoscale*, 2023, **15**, 19577–19585.
- 15. M. Yang, T. Wei, J. He, Q. Liu, L. Feng, H. Li, J. Luo and X. Liu, *Nano Res.*, 2024, **17**, 1209–1216.
- K. Dong, Y. Yao, H. Li, H. Li, S. Sun, X. He, Y. Wang, Y. Luo, D. Zheng, Q. Liu, Q. Li, D. Ma, X. Sun and B. Tang, *Nat. Synth.*, 2024, **3**, 763–773.
- 17. Y. Sun, X. Li, Z. Wang, L. Jiang, B. Mei, W. Fan, J. Wang, J. Zhu and J. M. Lee, *J. Am. Chem. Soc.*, 2024, **146**, 7752–7762.
- 18. G. Zhang, G. Wang, Y. Wan, X. Liu and K. Chu, *ACS Nano*, 2023, **17**, 21328–21336.