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PRISTINE THREE-DIMENSIONAL GRAPHENE

The fabricated 3DG samples were extensively characterized. Scanning Tunneling Mi-
croscopy confirmed the presence of graphene on the top surface of the porous material, see
Fig.

The quality of the grown graphene was analyzed via Raman spectroscopy. The graphene
2D peak (Fig. S2a) can be fitted with a single Lorentzian curve, indicating the presence of
monolayer graphene [I], consistent with the 2D/G intensity ratio of about 1.6. The D/G
intensity ratio is ~ 4.5, suggesting a low density of defects (the estimated average distance
between defects is ~ 20 nm [2]). From the distribution of the positions of G peak vs. 2D peak
(shown in Fig. S2b) we estimated a compressive strain of ~ 0.6% and a slight n-type doping
of the graphene sheet [3]. All Raman spectroscopy analysis performed here is consistent
with that reported in Ref. [4].

The morphology of 3DG was investigated both via High-Angle Annular Dark-Field Scan-
ning Transmission Electron Microscopy (HAADF-STEM) and Scanning Electron Microscopy
(SEM). From HAADF-STEM measurements we observed an average pore transverse dimen-
sion of (149 + 48) nm (neglecting all cavities smaller than 30nm). Through SEM, both the
sample surface and the cross-section (after cleaving the sample with a diamond tip) were
investigated. From SEM measurements we determined an average pore transverse dimension
of (166+20) nm, consistent with the HAADF-STEM measurement, and an average distance
between pores of (180 &+ 29) nm. Due to the larger set of SEM measurements taken into
account for extracting these values, their relative errors are lower compared to those from
HAADF-STEM. The pore morphology is consistent with that shown in Ref. [4] and resulted
in a surface area 200 times larger compared to a flat graphene sample. The average depth
of the porous region, extracted from SEM measurements performed on different samples, is
(18.1 £0.3) um (SEM images are shown in Fig. S3).

All characterization measurements performed here yielded consistent results with those

reported in Ref. [4].



() (d)

FIG. S1. (a) 500x500 nm? STM image (acquired at Vi,s = 2 V and I = 0.3 nA) showing the

structure of a pore of 3DG. The scale bar indicates 200 nm. (b) 100x100 nm? STM image of a 3DG
sample (acquired at Ve = 1 V and I = 0.8 nA) showing the graphene Moiré pattern. The scale
bar indicates 20 nm. (c) 50x50 nm? STM image, acquired in the flat central area of (b), 2D-FFT
filtered to highlight the Moiré pattern. The scale bar indicates 10 nm. (d) 2D-FFT filtered STM
image (acquired at Vp;qs = 0.4 V and I = 0.15 nA) showing the graphene lattice. The scale bar

indicates 2 nm.
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FIG. S2. (a) Typical Raman spectrum of 3DG obtained by averaging over a 20x20 pm? Raman
map. Fits of the D, G, D’, and 2D peaks of graphene are shown. (b) Raman G peak position vs.
2D peak position extracted from fits of a 20x20 ym? Raman map acquired on a 3DG sample. The

strain and the doping lines are also plotted.

FIG. S3. (a) Large scale cross-sectional SEM image showing the entire porousified layer. The scale

bar indicates 3 ym. (b) Cross-sectional SEM image of the topmost region of the porousified layer.

The scale bar indicates 400 nm.



FUNCTIONALIZED THREE-DIMENSIONAL GRAPHENE

FIG. S4. Picture of a 10 ul drop of Milli-Q water deposited on the surface of a pristine 3DG sample.
The hydrophobicity is evident, and the contact angle is estimated to be 125°. Analogous behavior

has already been observed on similar platforms. [5]

FIG. S5. SEM images of 3DG functionalized with AuNPs for 1 h under a) static condition and b)
ultrasonication. NPs are visible as bright spots and have been encircled in orange. It is evident

the higher density of NPs obtained in static condition.
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FIG. S6. Measurement of the resistance of an AulNPs-functionalized 3DG sample performed in a
4-wire configuration over many days. The value of the resistance is more than a factor 5 lower

than pristine 3DG as reported in Ref. [6]

FIG. S7. (a) AFM image of SDS-PdANPs deposited on a SiOs substrate. (b) SEM image of the

surface of a SDS-PdNPs functionalized 3D graphene sample. Large PANP clusters as well as

7clean” regions are visible. Singularly dispersed NPs are not detected.
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FIG. S8. (a) SEM image acquired (at 10 keV) on a 3D graphene sample functionalized with
SDS-PANPs which has been subjectet to several annealings (maximum annealing temperature was
800 °C). Large clusters of palladium are circled in orange; amorphous carbon areas are indicated
by the orange arrows; the green crosses are the spots in which EDX was performed. (b) SEM
image of the same region as (a) acquired utilizing the high scattering angle detector (for better
visualizing palladium). Also here the EDX measurement sites are indicated by green crosses. (c)
EDX spectra acquired in the three spots shown in (a) and (b). The lines of the main elements are

indicated. Sulfur poisoning is detected in the spectrum acquired over the large palladium cluster

(i.e., Object 422).
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FIG. S9. Top Left: STEM cross-sectional image of a PVP-PdNPs-functionalized 3DG sample.
One large PANP is circled in blue, while a cluster of smaller NPs is circled in red. Top Right:

EDX maps of palladium signal acquired in the blue and red circled regions (top and bottom image,

respectively). Bottom: EDX spectrum acquired at the blue circled NP.
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FIG. S10. HAADF TEM image of the top (a, b) and bottom (c, d) section of the thin lamella

cross-section with statistical analysis of the particle size distribution.



It is fundamental to have the vast majority of the pores much larger than the size of the
NPs to allow for their diffusion. Preliminary experiments performed on different samples
which exhibited a reduced dimension of the pores (~ 30 nm on average) led to a negligi-
ble density of NPs deep into the porous structure. While here the pores are sufficiently
large for the NPs diffusion, as demonstrated by SEM (Fig. and TEM measurements

(Fig. FTOSTT).
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FIG. S11. Volume segmentation of the thin lamella showing the PVP-PdNPs-functionalized 3DG

o

sample composition: (a) mix, (b) material and (c) pores. (d) statistical analysis of the pore

diameter.
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FIG. S12. (a) Fit of the XPS C 1s spectrum of PVP-PdNP-functionalized 3DG after annealing
at 610 °C. The fitted Shirley background signal is also plotted. The graphene buffer layer sp?
C atoms contribute to peak 1 (285.6 eV), graphene contributes to peak 2 (284.5 eV), and SiC
contributes to peak 3 (283.2 eV). (b) C 1s spectra of PVP-PdNP-functionalized 3DG acquired

after each annealing step.
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FIG. S13. 500x500 nm? STM image acquired (Vjiqs=1.6 V, I = 1.0 nA) on a PANP-functionalized
3DG sample after several thermal cycles (the maximum temperature reached is 800 °C). Because
of the extreme roughness of the sample surface due to the porosity and the presence of the NPs,
high resolution was not achieved. However, it is possible to observe singularly dispersed NPs with
diameters consistent with those of the pristine NPs (having considered the broadening due to the

low resolution).
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