Supplementary Information

Fusing Ta-Doped Li₇La₃Zr₂O₁₂ Grains by Nanoscale Y₂O₃ Sintering Aids

for High-Performance Solid-State Lithium Batteries

Hongyi Zhang^{a,1}, Yunfan Wu^{a,1}, Jie Zhu^a, Xujia Xie^a, Zixi Liu^a, Zewenhui Zhang^a, Yishu Ma^a, Ting

Huang^a, Laisen Wang^a, Jie Lin^{a,*}, Qingshui Xie^{a,*}, Dong-Liang Peng^{a,*}

^a College of Materials, Collaborative Innovation Center of Chemistry for Energy Materials, State

Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and

Interface Engineering for High Performance Materials, Xiamen University, Xiamen, Fujian, 361005,

China

¹These two authors contributed equally to this work.

*Corresponding authors: <u>linjie@xmu.edu.cn; xieqsh@xmu.edu.cn;</u> <u>dlpeng@xmu.edu.cn</u>

Samples	Li	La	Zr	Та	Y	Stoichiometries
LLZTO-P	7.30	3.27	1.54	0.19	0.00	$Li_{7.3}La_{3.27}Zr_{1.54}Ta_{0.19}O_{12}$
LLZTO-1%NYO	6.83	3.23	1.54	0.23	0.08	$Li_{6.83}La_{3.23}Zr_{1.54}Ta_{0.23}Y_{0.08}O_{12}$
LLZTO-2%NYO	6.76	3.21	1.53	0.26	0.13	$Li_{6.76}La_{3.21}Zr_{1.53}Ta_{0.26}Y_{0.13}O_{12}$
LLZTO-5%NYO	6.84	3.19	1.52	0.30	0.22	$Li_{6.84}La_{3.19}Zr_{1.52}Ta_{0.30}Y_{0.22}O_{12}$
LLZTO-10%NYO	7.08	3.13	1.57	0.30	0.65	$Li_{7.08}La_{3.13}Zr_{1.57}Ta_{0.30}Y_{0.65}O_{12}$

 Table S1.
 Stoichiometries of LLZTO pellets obtained from ICP-OES Tests.

 Table S2.
 Size data for measuring relative density.

Samplas	Quality (mg)	Thickness (mm)	Diamator (mm)	Density	Relative
Samples	Quanty (mg)	Thickness (mm)	Diameter (mm)	(g cm ⁻³)	density (%)
LLZTO-P	839.65	1.50	12.10	4.87	90.87
LLZTO-1%NYO	843.08	1.52	12.08	4.84	90.34
LLZTO-2%NYO	813.98	1.44	12.08	4.93	92.06
LLZTO-5%NYO	777.16	1.42	11.64	5.15	96.00
LLZTO-10%NYO	495.08	1.08	11.56	4.37	81.53

 Table S3.
 Comparison of ionic conductivity with reported LLZTO electrolytes.

Composition	Conductivity	Synthesis method	Deference	
Composition	$(S \text{ cm}^{-1})$	Synthesis method	Kelelence	
$Li_{6.4}La_3Zr_{1.4}Ta_{0.6}O_{12}$	6.1×10 ⁻⁴	Molten salt synthesis	1	
$10 \text{ mol}\% \text{ Al}_2\text{O}_3 + \text{Li}_{6.4}\text{La}_3\text{Zr}_{1.4}\text{Ta}_{0.6}\text{O}_{12}$	3.1×10 ⁻⁴	Al ₂ O ₃ sintering additive	2	
$5 \ wt\% \ MgO + Li_{6.4} La_3 Zr_{1.4} Ta_{0.6} O_{12}$	5.2×10 ⁻⁴	MgO sintering additive	3	
$6 \text{ wt\% MgO} + Li_{6.4}La_3Zr_{1.4}Ta_{0.6}O_{12}$	5.17×10 ⁻⁴	MgO sintering additive	4	
1 mol% SiO ₂ + $Li_{6.4}La_3Zr_{1.4}Ta_{0.6}O_{12}$	3.84×10 ⁻⁴	SiO ₂ sintering additive	5	
SnO ₂ coated Li _{6.4} La ₃ Zr _{1.4} Ta _{0.6} O ₁₂	1.6×10^{-3}	Hot pressing and coating	6	
$Li_{6.84}La_{3.19}Zr_{1.52}Ta_{0.30}Y_{0.22}O_{12}$	7.39×10 ⁻⁴	Y ₂ O ₃ sintering additive	This work	

Figure S1. XRD patterns of LLZTO-10%NYO powder.

Figure S2. Cross-section SEM images (a-d) and elemental mappings (e-h) of LLZTO-10%NYO.

Figure S3. EIS plots of Ag|LLZTO-10%NYO|Ag cell.

Figure S4. Elemental mappings of (a-d) LLZTO-1%NYO and (e-h) LLZTO-2%NYO pellets.

Figure S5. Linear scanning voltammetry (LSV) curve of SS|LLZTO-5%NYO|Li cell.

Figure S6. Rate Capability of LiFePO₄|LLZTO-5%NYO|Li full cell.

Figure S7. Cross section photos of (a) LLZTO-P and (b) LLZTO-5%NYO pellets after cycling.

References

- 1. J. M. Weller and C. K. Chan, Acs Appl Energ Mater, 2020, 3, 6466-6475.
- 2. K. K. Zhang, T. Xu, H. L. Zhao, S. S. Zhang, Z. J. Zhang, Y. Zhang, Z. H. Du and Z. L. Li, *Int J Energ Res*, 2020, 44, 9177-9184.
- X. Huang, C. Liu, Y. Lu, T. P. Xiu, J. Jin, M. E. Badding and Z. Y. Wen, *J Power Sources*, 2018, 382, 190-197.
- X. Huang, Y. Lu, Z. Song, T. P. Xiu, M. E. Badding and Z. Y. Wen, *J Energy Chem*, 2019, 39, 8-16.
- 5. S. S. Zhang, H. L. Zhao, J. Wang, T. Xu, K. K. Zhang and Z. H. Du, *Chem Eng J*, 2020, 393.
- 6. Y. Chen, M. H. He, N. Zhao, J. M. Fu, H. Y. Huo, T. Zhang, Y. Q. Li, F. F. Xu and X. X. Guo, *J Power Sources*, 2019, 420, 15-21.