Yttrium Doping Stabilizes the Structure of Ni₃(NO₃)₂(OH)₄ Cathodes for Application in Advanced Ni-Zn Batteries

Xinyu Feng ^a, Siwen Zhang ^a, Jiazhuo Li ^a, Yingfang Hu ^a, Rongyuan Ge ^a, Yaowen Shi ^a, Yali Yao ^b, Bosi Yin ^{a,*} and Tianyi Ma ^{c,*}

The energy density (E, Wh/kg) and power density (P, W/kg) of the devices were calculated using the following formula:

$$E = \int IV dt/m \tag{1}$$

$$P = E / \Delta t \tag{2}$$

Where I was the discharging current, V was the discharging voltage, dt was the time differential, m was the total mass of the active electrode materials, Δt was the discharging time.

Figure S1. Part of the XRD patterns of Ni₃(NO₃)₂(OH)₄ and Y-Ni₃(NO₃)₂(OH)₄.

Materials	Y(at%)	Ni(at%)	Y:Ni
Y-Ni ₃ (NO ₃) ₂ (OH) ₄	2.41	31.73	7.59%

Table 1. Determine the atomic ratio of Y to Ni in $Y-Ni_3(NO_3)_2(OH)_4$ by EDS.

Figure S2. (a) SEM images of $Ni_3(NO_3)_2(OH)_4$, (b)SEM images of Y- $Ni_3(NO_3)_2(OH)_4$.

Figure S3. (a-b)TEM images of $Ni_3(NO_3)_2(OH)_4$, (c)SAED pattern of $Ni_3(NO_3)_2(OH)_4$, (d) HRTEM of $Ni_3(NO_3)_2(OH)_4$.

Figure S4. (a) CV curves of the Y-Ni₃(NO₃)₂(OH)₄ electrodes at different scan rates,
(b) Relationship of Y-Ni₃(NO₃)₂(OH)₄ between log (*i*) and log (*v*).

Figure S5. Capacitive contributions of Ni₃(NO₃)₂(OH)₄ at different scan rates.

Figure S6. CV curves of the $Ni_3(NO_3)_2(OH)_4//Zn$ battery electrodes at different scan rates.

Figure S7. SEM of Y-Ni₃(NO₃)₂(OH)₄ after 100 charge-discharge cycles at 1 A/g.

Figure S8. XPS of Y-Ni₃(NO₃)₂(OH)₄ after 100 charge-discharge cycles at 1 A/g.