Supplementary Information for

Electronic Structures and Charge Transport Mobilities in Hybrid Organic-inorganic Mixed Sn-Pb Alloyed Perovskites

Pattanasak Teeratchanan¹, Udomsilp Pinsook², Wutthikrai Busayaporn³ and Anusit Thongnum^{1,*}

¹Department of Physics, Faculty of Science, Srinakharinwirot University, Bangkok 10110,

Thailand

²Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10300,

Thailand

³Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000,

Thailand

*Corresponding author e-mail: anusit@g.swu.ac.th

S1. Structural properties

Pb content	a (Å)	b (Å)	c (Å)	α (°)	β (°)	γ (°)	V (Å ³)
x = 0.0	12.780	12.864	12.775	90.00	90.00	90.00	2100.2345
x = 0.125	14.355	12.763	12.671	89.50	85.65	90.64	2321.4902
x = 0.25	14.337	12.752	12.643	89.43	86.47	91.34	2311.4618
x = 0.375	14.351	12.744	12.634	89.28	86.72	91.08	2310.6214
x = 0.5	14.392	12.900	12.518	90.00	88.89	89.99	2324.0518
x = 0.625	14.329	12.938	12.559	89.60	85.79	90.57	2328.2954
x = 0.75	14.666	12.661	12.623	90.79	89.09	90.53	2343.9172
x = 0.875	14.680	12.621	12.657	90.55	89.08	90.57	2345.0418

Table S1. Calculated lattice constants (*a*, *b*, and *c*), angles between the base vectors (α , β , and γ), and structural volume (V) in the FA_{0.75}Cs_{0.25}Sn_{1-x}Pb_xI₃ mixed perovskites with a 2×2×2 supercell.

Pb content	θ_{ab} (°)	θ_{z} (°)
x = 0.0	162.0012	159.3035
	162.0012	159.3035
	162.8436	163.6155
	162.8436	163.6155
x = 0.125		151.7160
		157.4875
<i>x</i> = 0.25	162.9221	148.3039
	172.7045	155.9225
		158.6629
x = 0.375	164.8589	147.9664
		158.4977
		158.6280
<i>x</i> = 0.5	156.5134	165.8015
	156.5134	166.9284
<i>x</i> = 0.625	158.5985	142.1254
	158.5985	151.7415
	161.5770	
x = 0.75	145.275	146.4781
	155.5197	146.5527
		148.7081
		160.6034
x = 0.875	146.8620	146.4402
	153.5496	147.3735
		148.1203
		162.1327

Table S2 Estimated B-I-B angles of the FA_{0.75}Cs_{0.25}Sn_{1-x}Pb_xI₃ mixed perovskites with a 2×2×2 supercell in the *ab* direction (θ_{ab}) and *z* direction (θ_z).

 $\textbf{Table S3.} Estimated B-I bond lengths of the FA_{0.75}Cs_{0.25}Sn_{1-x}Pb_xI_3 mixed perovskites with a 2\times2\times2$

|--|

x = 0	.0	x = ().125	x =	0.25	x = ().375	x =	0.5	x = ().625	x = 0.75		x = 0.875	
Sn-I	Pb	Sn-I	Pb-I	Sn-I	Pb-I	Sn-I	Pb-I								
	-I														
2.95392		2.91928	3.02175	2.93954	3.02811	2.99497	2.98423	2.95449	3.15751	3.00279	3.00128	3.05219	3.00036	3.11295	3.02139
2.95392		2.97706	3.16172	2.94403	3.03547	2.99685	3.02303	2.9681	3.18228	3.04048	3.01909	3.10951	3.00761	3.12458	3.04271
2.95392		2.98984	3.22605	2.96601	3.15124	3.01837	3.02315	2.9681	3.18233	3.08336	3.03438	3.12239	3.01489	3.28188	3.05835
2.95877		3.00754	3.3446	2.96816	3.15311	3.044	3.12096	2.96892	3.19087	3.19731	3.04614	3.14265	3.03679	3.31064	3.0606
2.95877		3.02694	3.40114	2.98155	3.20547	3.08568	3.15424	2.969	3.19096	3.24798	3.05715	3.24487	3.06188		3.07756
2.95877		3.03697	3.67987	2.98526	3.22062	3.09056	3.16765	3.14818	3.20457	3.43002	3.07952	3.3063	3.06383		3.09381
2.95877		3.0395		2.99249	3.33381	3.11483	3.22941	3.14823	3.20461	3.48018	3.09578	3.30825	3.0754		3.10938
3.19927		3.0534		3.0074	3.36832	3.13563	3.26865	3.15381	3.31303		3.12179	3.40452	3.09056		3.1469
3.19927		3.05355		3.02278	3.40341	3.30986	3.28448	3.15384	3.31312		3.15314		3.10342		3.15535
3.20702		3.05922		3.0334	3.41663	3.3332	3.28532	3.31832	3.33585		3.18462		3.10448		3.1776
3.20702		3.09531		3.07609	3.66052	3.33832	3.29448	3.31833	3.33596		3.21167		3.13497		3.18373
3.20702		3.33626		3.09844	3.68909	3.35352	3.30915	3.31943	3.3457		3.22109		3.15818		3.18846
3.20702		3.35705		3.12615		3.40514	3.37239	3.31951	3.34576		3.23496		3.18422		3.20333
3.21036		3.39576		3.26728		3.46837	3.39613	3.48119	3.35515		3.23915		3.20739		3.21181
3.21036		3.4115		3.32624		3.47506	3.41324	3.48125	3.35523		3.2784		3.2116		3.21978
3.21036		3.44383		3.33678		3.50541					3.28091		3.22691		3.23243
3.21036		3.45076		3.38488							3.28636		3.2323		3.23824
3.21696		3.45608		3.43087							3.33238		3.25395		3.24457
3.21696		3.46017		3.45229							3.33673		3.26412		3.26188
3.21696				3.47626							3.35099		3.26735		3.26513
3.24084				3.50889							3.36524		3.27457		3.2676
3.24084				3.51504							3.37892		3.28693		3.2718
3.24084											3.38967		3.30979		3.27296
3.24084											3.41798		3.32600		3.30973
3.24128											3.48184		3.36432		3.3174
3.24128											3.62627		3.43915		3.31944
3.24128													3.43948		3.3583
3.24235													3.44231		3.36052
3.24235													3.53936		3.3934
3.24235													3.57092		3.4200
3.24235													3.59681		3.5238
3.2622															3.55709
3.2622															3.59164
3.2622															
3.51533															
3.51533															
3.51533															
3.200	1	3.2	162	3.2	207	3.2	256	3.2	227	3.2	335	3.2	303	3.2	439
Average	value	(Å)													

Pb content	FASn _{1-x} F	$b_xI_3[S1]$			FASn _{1-x} Pb _x I ₃ [S3]				
	a (Å)	b (Å)	<i>c</i> (Å)	Phase	a (Å)	b (Å)	c (Å)	Phase	
x = 0.0	6.313	8.936	8.913	Amm2	6.3074	6.3074	6.3074	Pm3m	
x = 0.125	6.322	8.938	8.921	Amm2					
x = 0.25	6.321	8.934	8.912	Amm2	6.3158	6.3158	6.3158	Pm3m	
x = 0.5	6.416	8.965	8.950	Amm2	6.344	6.344	6.344	Pm3m	
x = 0.625	6.415	8.960	8.942	Amm2					
x = 0.75	6.415	8.960	8.942	Amm2	6.3401	6.3401	6.3401	Pm3m	
Pb content	FA _{0.75} Cs	$_{0.25}$ Sn _{1-x} Pb	_x I ₃ [S1,S4	·]	$FA_{0.83}Cs_{0.17}Sn_{1-x}Pb_xI_3$ [S2]				
	a (Å)	b (Å)	c (Å)	Phase	a (Å)	b (Å)	c (Å)	Phase	
x = 0.0					6.278	6.278	6.278	Pm3m	
x = 0.5	6.449	8.925	8.903	Amm2	6.292	6.292	6.292	Pm3m	

Table S4. Experimental results of lattice constants (*a*, *b*, and *c*) and structural phases in the FASn₁₋ $_xPb_xI_3$, FA_{0.75}Cs_{0.25}Sn_{1-x}Pb_xI₃ and FA_{0.83}Cs_{0.17}Sn_{1-x}Pb_xI₃ alloyed perovskites measured at room temperature [S1-S4].

material	Phase	XRD peak (2θ) corresponding to (h,l,k) plane	Ref.
FASnI ₃	Pm3m	14° (100), 28° (200)	[S3]
$FA_{0.83}Cs_{0.17}SnI_3$	Pm3m	14° (100), 28° (200)	[S2]
$FASn_{0.85}Pb_{0.25}I_3$	Pm3m	14° (100), 28° (200)	[S3]
$FASn_{0.5}Pb_{0.5}I_3$	Pm3̄m	14° (100), 28° (200)	[S3]
$FA_{0.83}Cs_{0.17}Sn_{0.5}Pb_{0.5}I_3$	Pm3m	14.° (100), 28° (200)	[S2]
$FASn_{0.25}Pb_{0.75}I_3$	Pm3m	14° (100), 28° (200)	[S3]
FASnI ₃	Amm2		[S1]
$FASn_{0.875}Pb_{0.125}I_3$	Amm2		[S1]
$FASn_{0.85}Pb_{0.25}I_3$	Amm2	14.07° (100), 20.02° (110), 24.59° (111),	[S1]
$FASn_{0.5}Pb_{0.5}I_3$	Amm2	28.35° (200), 31.93° (210), 40.67° (220)	[S1]
$FA_{0.75}Cs_{0.25}Sn_{0.5}Pb_{0.5}I_3$	Amm2		[S1,S4]
$FASn_{0.375}Pb_{0.625}I_{3}$	Amm2		[S1]
$FASn_{0.25}Pb_{0.75}I_3$	Amm2		[S1]

Table S5. Experimental data of some prominent XRD peaks in pure-Sn and mixed Sn-Pbperovskites [S1-S4].

Figure S1. Average B-I-B tilting angles and average B-I bond length in the $FA_{0.75}Cs_{0.25}Sn_{1-x}Pb_xI_3$ mixed perovskites with a 2×2×2 supercell as a function of Pb content.

S2. Electronic band structure

Figure S2. Electronic band structures along the high-symmetry point directions, Γ -M, Γ -Z, Γ -X, Γ -A, and Γ -R, for the mixed tin-lead iodide perovskites with (a) x = 0.0, (b) x = 0.125, (c) x = 0.25, (d) x = 0.375, (e) x = 0.5, (f) x = 0.625, (g) x = 0.75, and (h) x = 0.875. The VBM is set to zero.

S3. Carrier effective masses

Pb	(Γ-Z)		(Г-Х)		(Г-М)		(Γ-R)		(Г-А)	
content	$m_{e}^{*}(m_{0})$	$m_h^*(m_0)$	$m_{e}^{*}(m_{0})$	$m_h^*(m_0)$	$m_e^*(m_0)$	$m_h^*(m_0)$	$m_{e}^{*}(m_{0})$	$m_h^*(m_0)$	$m_e^*(m_0)$	$m_h^*(m_0)$
<i>x</i> = 0.0	0.076	0.123	0.980	0.199	1.044	0.139	0.141	0.153	0.204	0.135
<i>x</i> = 0.125	0.715	0.216	0.197	0.229	0.348	0.408	0.258	0.221	0.342	0.278
<i>x</i> = 0.25	0.473	0.200	0.233	0.233	0.397	0.421	0.258	0.213	0.345	0.281
<i>x</i> = 0.375	0.180	0.197	1.032	0.227	1.479	0.411	0.270	0.210	0.360	0.276
<i>x</i> = 0.5	0.644	0.305	0.843	0.182	1.197	0.362	0.344	0.231	0.454	0.303
<i>x</i> = 0.625	3.009	0.438	0.140	0.246	0.264	0.591	0.255	0.303	0.341	0.438
x = 0.75	0.164	0.264	1.379	0.282	1.703	0.585	0.296	0.279	0.363	0.412
x = 0.875	0.158	0.292	1.387	0.259	1.659	0.494	0.284	0.277	0.346	0.387

Table S6. Calculated effective masses of electrons and holes along the Γ -high-symmetry point directions in FA_{0.75}Cs_{0.25}Sn_{1-x}Pb_xI₃ mixed perovskites, where m_0 is the free electron mass.

Table S7. Calculated effective masses along the Γ -R and Γ -A directions, average effective masses and reduced masses in FA_{0.75}Cs_{0.25}Sn_{1-x}Pb_xI₃ mixed perovskites.

Pb	Effective mass		Effective mass		Average mass		Reduced mass
content	(Γ-R)		(Г-А)				
	$m_e^*(m_0)$	$m_h^*(m_0)$	$m_e^*(m_0)$	$m_h^*(m_0)$	$\overline{m}_e^*(m_0)$	$\overline{m}_h^*(m_0)$	$\mu_r(m_0)$
x = 0.0	0.141	0.153	0.204	0.135	0.172	0.144	0.078
x = 0.125	0.258	0.221	0.342	0.278	0.300	0.249	0.136
x = 0.25	0.258	0.213	0.345	0.281	0.302	0.247	0.136
x = 0.375	0.270	0.210	0.360	0.276	0.315	0.243	0.137
x = 0.5	0.344	0.231	0.454	0.303	0.399	0.267	0.160
x = 0.625	0.255	0.303	0.341	0.438	0.298	0.370	0.165
x = 0.75	0.296	0.279	0.363	0.412	0.329	0.345	0.168
x = 0.875	0.284	0.277	0.346	0.387	0.315	0.332	0.162

S4. Charge-carrier mobility

Figure S3. Plot of total charge-carrier mobility (dotted orange line), hole mobility (solid green line) and electron mobility (solid magenta line) as a function of temperature, calculated using $N_I^{(e)} = N_I^{(h)} = 1.0 \times 10^{19} \text{ cm}^{-3}$, as a function of temperature.

S5. Comparisons of the carrier effective masses using DFT calculations

Material	Functional	$m_{e}^{*}\left(m_{0} ight)$	$m_h^*(m_0)$	Ref.
FA _{0.75} Cs _{0.25} SnI ₃	PBE	0.172	0.144	This work
FASnI ₃	PBE	0.29	0.14	[S5]
FASnI ₃	PBE	0.18	0.12	[S5]
FASnI ₃	HSE06	0.28	0.11	[S6,S7]
MASnI ₃	GW+SOC	0.36	0.16	[S8]
$FA_{0.75}Cs_{0.25}Sn_{0.75}Pb_{0.25}I_3$	PBE	0.302	0.247	This work
$FA_{0.875}Cs_{0.125}Sn_{0.75}Pb_{0.25}I_3$	PBE+SOC	0.1	0.08	[S9]
$MASn_{0.75}Pb_{0.25}I_{3}$	GW+SOC	0.23	0.14	[S8]
$FA_{0.75}Cs_{0.25}Sn_{0.5}Pb_{0.5}I_3$	PBE	0.399	0.267	This work
$FA_{0.75}Cs_{0.25}Sn_{0.5}Pb_{0.5}I_3$	PBE	0.33	0.296	[S10]
$FA_{0.875}Cs_{0.125}Sn_{0.5}Pb_{0.5}I_3$	PBE+SOC	0.1	0.11	[S9]
$MASn_{0.5}Pb_{0.5}I_3$	GW+SOC	0.32	0.21	[S8]
$FA_{0.75}Cs_{0.25}Sn_{0.25}Pb_{0.75}I_3$	PBE	0.329	0.345	This work
$FA_{0.875}Cs_{0.125}Sn_{0.25}Pb_{0.75}I_3$	PBE+SOC	0.13	0.14	[S9]
$MASn_{0.25}Pb_{0.75}I_3$	GW+SOC	0.37	0.26	[S8]
FAPbI ₃	HSE06+SOC	0.184	0.213	[S11]
$FA_{0.875}Cs_{0.125}PbI_{3}$	PBE+SOC	0.13	0.19	[S9]
$FA_{0.83}Cs_{0.17}PbI_{3}$	GW+SOC	0.218	0.273	[S12]

Table S8. DFT calculations of electron and hole effective masses $(m_e^* \text{ and } m_h^*)$ with different functionals in pure-Sn, mixed Sn-Pb, and pure-Pb perovskites.

Figure S4. DFT calculations of electron (magenta bars) and hole (cyan bars) effective masses with different functionals in pure-Sn, mixed Sn-Pb, and pure-Pb perovskites, (a) pure-Sn, (b) Sn_{0.75}Pb_{0.25}, (c) Sn_{0.5}Pb_{0.5}, (d) Sn_{0.25}Pb_{0.75}, and (e) pure-Pb perovskites.

References

- [S1] G. E. Eperon, T. Leijtens, K. A. Bush, R. Prasanna, T. Green, J. T. Wang, D. P. McMeekin,
- G. Volonakis, R. L. Milot, R. May, A. Palmstrom, D. J. Soltcavage, R. A. Belisle, J. B. Patel, E.
- S. Parrott, R. J. Sutton, W. Ma, F. Moghadam, B. Conings, A. Babayigit, H. -G. Boyen, S. Bent,
- F. Giustino, L. M. Herz, M. B. Johnston and M. D. McGehee, Science, 2016, 354, 861-865.
- [S2] M. T. Klug, R. L. Milot, J. B. Patel, T. Green, H. C. Sansom, M. D. Farrar, A. J. Ramadan,
- S. Martani, Z. Wang, B. Wenger, J. M. Ball, L. Langshaw, A. Petrozza, M. B. Johnston, L. M. Herz and H. J. Snaith, *Energy Environ. Sci.*, 2020, **13**, 1776-1787.
- [S3] S. Kahmann, Z. Chen, O. Hordiichuk, O. Nazarenko, S. Shao, M. V. Kovalenko, G. R. Blake,S. Tao and M. A. Loi, *ACS Appl. Mater. Interfaces*, 2022, 14, 34253-34261.
- [S4] M. Pitaro, J. S. Alonso, L. Di Mario, D. G. Romero, K. Tran, T. Zaharia, M. B. Johansson, E.M. Johansson and M. A. Loi, *J. Mater. Chem. A*, 2023, 1, 11755-11766.
- [S5] Z.-Q. Ma, H. Pan and P. K. Wong, J. Electron. Mater., 2016, 45, 5956-5966.
- [S6] M. Roknuzzaman, J. A. Alarco, H. Wang, A. Du, T. Tesfamichael and K. Ostrikov, *Comput. Mater. Sci.*, 2019, **169**, 109118.
- [S7] M. Pitaro, E. K. Tekelenburg, S. Shao and M. A. Loi, Adv. Mater., 2021, 34, 2105844.
- [S8] A. Goyal, S. McKechnie, D. Pashov, W. Tumas, M. Van Schilfgaarde and V. Stevanovic, *Chem. Mater.*, 2018, **30**, 3920-3928.
- [S9] S. P. Senanayak, K. Dey, R. Shivanna, W. Li, D. Ghosh, Y. Zhang, B. Roose, S. J. Zelewski, Z. Andaji-Garmaroudi, W. Wood, N. Tiwale, J. L. MacManus-Driscoll, R. H. Friend, S. D. Stranks and H. Sirringhaus, *Nat. Mater.*, 2023, 22, 216-224.
- [S10] X. -F. Diao, Y. -L. Tang, Q. Xie, D. -L. Chen, S. -X. Li and G. -F. Liu, ACS Omega, 2019, 4, 20024-20035.
- [S11] S. Wang, W. B. Xiao and F. Wang, RSC Adv., 2020, 10, 32364-32369.
- [S12] Z. Muhammad, P. Liu, R. Ahmad, S. J. Asadabadi, C. Franchini and I. Ahmad, *Phys. Chem. Chem. Phys.*, 2020, 22, 11943-11955.